Citation: FAN Yu-Qian, SHAO Hai-Bo, WANG Jian-Ming, LIU Liang, ZHANG Jian-Qing, CAO Chu-Nan. Discharge Performance of Alkaline Sulfide Fuel Cells Using Non-Precious Anode Catalysts[J]. Acta Physico-Chimica Sinica, ;2012, 28(01): 90-94. doi: 10.3866/PKU.WHXB20122890 shu

Discharge Performance of Alkaline Sulfide Fuel Cells Using Non-Precious Anode Catalysts

  • Received Date: 26 July 2011
    Available Online: 9 November 2011

    Fund Project: 浙江省自然科学基金(Y406192)与浙江省新材料及加工工程省重中之重学科开放课题(20110928)资助项目 (Y406192)与浙江省新材料及加工工程省重中之重学科开放课题(20110928)

  • The choice of fuel is an important issue influencing the selection of catalyst, cost, and commercialization of fuel cells. Electrochemically-active and low-cost fuels that can be oxidized by non-precious catalysts are an attractive objective. The native electrochemical activity and low cost of sulfide make it a suitable candidate. Fuel cells using alkaline sulfide as a fuel were developed. At room temperature, a single cell containing non-precious anode catalysts achieves a maximum power density of 12.3 mW·cm-2 with a current density of 42.8 mA·cm-2. Life tests show that alkaline sulfide fuel cells exhibit od durability. Ion chromatography detected considerable amounts of thiosulfate, sulfite, and sulfate. The deep oxidation and high capacity of sulfide make it an attractive fuel candidate. Compared with other fuels, sulfide has the advantages of being inexpensive, easy to transport, possesses high electrochemical activity, and can be catalyzed by non-precious catalysts.
  • 加载中
    1. [1]

      (1) Steele, B. C. H.; Heinzel, A. Nature 2001, 414, 345.  

    2. [2]

      (2) Elam, C. C.; Padró, C. E. G.; Sandrock, G.; Luzzi, A.; Lindblad, P.; Hagen, E. F. Int. J. Hydrog. Energy 2003, 28, 601.  

    3. [3]

      (3) Jain, I. P. Int. J. Hydrog. Energy 2009, 34, 7368.  

    4. [4]

      (4) Holladay, J. D.; Hu, J.; King, D. L.;Wang, Y. Catal. Today 2009, 139, 244.  

    5. [5]

      (5) Liu, H.; Song, C.; Zhang, L.; Zhang, J.;Wang, H.;Wilkinson, D. P. J. Power Sources 2006, 155, 95.  

    6. [6]

      (6) Wasmus, S.; Küver, A. J. Electroanal. Chem. 1999, 461, 14.  

    7. [7]

      (7) Zhou,W.; Zhou, Z.; Song, S.; Li,W.; Sun, G.; Tsiakaras, P.; Xin, Q. Appl. Catal. B-Environ. 2003, 46, 273.  

    8. [8]

      (8) Antolini, E. J. Power Sources 2007, 170, 1.  

    9. [9]

      (9) Serov, A.; Kwak, C. Appl. Catal. B-Environ. 2010, 98, 1.  

    10. [10]

      (10) Ma, J.; Choudhury, N. A.; Sahai, Y. Renew. Sust. Energ. Rev. 2010, 14, 183.  

    11. [11]

      (11) Demirci, U. B. J. Power Sources 2007, 169, 239.  

    12. [12]

      (12) Serov, A.; Kwak, C. Appl. Catal. B-Environ. 2009, 90, 313.  

    13. [13]

      (13) Liu, B. H.; Li, Z. P.; Suda, S. J. Electrochem. Soc. 2003, 150, A398.

    14. [14]

      (14) Asazawa, K.; Yamada, K.; Tanaka, H.; Oka, A.; Taniguchi, M.; Kobayashi, T. Angew. Chem. Int. Edit. 2007, 46, 8024.  

    15. [15]

      (15) Peramunage, D.; Licht, S. Science 1993, 261, 1029.  

    16. [16]

      (16) Bendikov, T. A.; Yarnitzky, C.; Licht, S. J. Phys. Chem. B 2002, 106, 2989.  

    17. [17]

      (17) Remick, R. J.; Ang, P. G. P. Electrically Rechargeable Anionically Active Reduction-Oxidation Electrical Storage-Supply System. U.S. Pat. Appl. 4485154, 1984.

    18. [18]

      (18) Licht, S. Nature 1987, 300, 148.

    19. [19]

      (19) Hodes, G.; Manassen, J.; Cahen, D. J. Electrochem. Soc. 1980, 127, 544.  

    20. [20]

      (20) Bolmer, P.W. Electrochemical Oxidation of Hydrogen Sulfide. U.S. Pat. Appl. 3249522, 1966.

    21. [21]

      (21) Zito, R.; Kunz, L. J. Method of Operating a Fuel Cell Using Sulfide Fuel. U.S. Pat. Appl. 3920474, 1975.

    22. [22]

      (22) Wang, Q.; Li, H.; Chen, L.; Huang, X. Carbon 2001, 39, 2211.  

    23. [23]

      (23) Bidault, F.; Brett, D. J. L.; Middleton, P. H.; Brandon, N. P. J. Power Sources 2009, 187, 39.  

    24. [24]

      (24) Gülzow, E.; Schulze, M.; Gerke, U. J. Power Sources 2006, 156, 1.  

    25. [25]

      (25) Chen, K. Y.; Morris, J. C. Environ. Sci. Technol. 1972, 6, 529.  

    26. [26]

      (26) Kleinjan,W. E.; Keizer, A.; Janssen, A. J. H. Water Res. 2005, 39, 4093.  

    27. [27]

      (27) Fischer, H.; Schulz-Ekloff, G.;Wohrle, D. Chem. Eng. Technol. 1997, 20, 462.  

  • 加载中
    1. [1]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    2. [2]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    3. [3]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    4. [4]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    5. [5]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    6. [6]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    7. [7]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    8. [8]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    9. [9]

      Yong Zhou Jia Guo Yun Xiong Luying He Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, 2024, 39(7): 330-336. doi: 10.3866/PKU.DXHX202310109

    10. [10]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    11. [11]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    12. [12]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    13. [13]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    14. [14]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    15. [15]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    16. [16]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    17. [17]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    18. [18]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    19. [19]

      Yifei Cheng Jiahui Yang Wei Shao Wanqun Zhang Wanqun Hu Weiwei Li Kaiping Yang . Learning Goes Beyond the Written Word: Practical Insights from the “Leaf Electroplating” Popular Science Experiment. University Chemistry, 2024, 39(9): 319-327. doi: 10.3866/PKU.DXHX202310033

    20. [20]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

Metrics
  • PDF Downloads(865)
  • Abstract views(3077)
  • HTML views(11)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return