Citation: FAN Yu-Qian, SHAO Hai-Bo, WANG Jian-Ming, LIU Liang, ZHANG Jian-Qing, CAO Chu-Nan. Discharge Performance of Alkaline Sulfide Fuel Cells Using Non-Precious Anode Catalysts[J]. Acta Physico-Chimica Sinica, ;2012, 28(01): 90-94. doi: 10.3866/PKU.WHXB20122890
-
The choice of fuel is an important issue influencing the selection of catalyst, cost, and commercialization of fuel cells. Electrochemically-active and low-cost fuels that can be oxidized by non-precious catalysts are an attractive objective. The native electrochemical activity and low cost of sulfide make it a suitable candidate. Fuel cells using alkaline sulfide as a fuel were developed. At room temperature, a single cell containing non-precious anode catalysts achieves a maximum power density of 12.3 mW·cm-2 with a current density of 42.8 mA·cm-2. Life tests show that alkaline sulfide fuel cells exhibit od durability. Ion chromatography detected considerable amounts of thiosulfate, sulfite, and sulfate. The deep oxidation and high capacity of sulfide make it an attractive fuel candidate. Compared with other fuels, sulfide has the advantages of being inexpensive, easy to transport, possesses high electrochemical activity, and can be catalyzed by non-precious catalysts.
-
Keywords:
-
Fuel cell
, - Alkaline sulfide,
- Low-cost catalyst,
- Deep oxidation,
- Electrochemistry
-
-
- [1]
-
[2]
(2) Elam, C. C.; Padró, C. E. G.; Sandrock, G.; Luzzi, A.; Lindblad, P.; Hagen, E. F. Int. J. Hydrog. Energy 2003, 28, 601.
- [3]
-
[4]
(4) Holladay, J. D.; Hu, J.; King, D. L.;Wang, Y. Catal. Today 2009, 139, 244.
-
[5]
(5) Liu, H.; Song, C.; Zhang, L.; Zhang, J.;Wang, H.;Wilkinson, D. P. J. Power Sources 2006, 155, 95.
-
[6]
(6) Wasmus, S.; Küver, A. J. Electroanal. Chem. 1999, 461, 14.
-
[7]
(7) Zhou,W.; Zhou, Z.; Song, S.; Li,W.; Sun, G.; Tsiakaras, P.; Xin, Q. Appl. Catal. B-Environ. 2003, 46, 273.
- [8]
-
[9]
(9) Serov, A.; Kwak, C. Appl. Catal. B-Environ. 2010, 98, 1.
-
[10]
(10) Ma, J.; Choudhury, N. A.; Sahai, Y. Renew. Sust. Energ. Rev. 2010, 14, 183.
- [11]
-
[12]
(12) Serov, A.; Kwak, C. Appl. Catal. B-Environ. 2009, 90, 313.
-
[13]
(13) Liu, B. H.; Li, Z. P.; Suda, S. J. Electrochem. Soc. 2003, 150, A398.
-
[14]
(14) Asazawa, K.; Yamada, K.; Tanaka, H.; Oka, A.; Taniguchi, M.; Kobayashi, T. Angew. Chem. Int. Edit. 2007, 46, 8024.
- [15]
-
[16]
(16) Bendikov, T. A.; Yarnitzky, C.; Licht, S. J. Phys. Chem. B 2002, 106, 2989.
-
[17]
(17) Remick, R. J.; Ang, P. G. P. Electrically Rechargeable Anionically Active Reduction-Oxidation Electrical Storage-Supply System. U.S. Pat. Appl. 4485154, 1984.
-
[18]
(18) Licht, S. Nature 1987, 300, 148.
-
[19]
(19) Hodes, G.; Manassen, J.; Cahen, D. J. Electrochem. Soc. 1980, 127, 544.
-
[20]
(20) Bolmer, P.W. Electrochemical Oxidation of Hydrogen Sulfide. U.S. Pat. Appl. 3249522, 1966.
-
[21]
(21) Zito, R.; Kunz, L. J. Method of Operating a Fuel Cell Using Sulfide Fuel. U.S. Pat. Appl. 3920474, 1975.
-
[22]
(22) Wang, Q.; Li, H.; Chen, L.; Huang, X. Carbon 2001, 39, 2211.
-
[23]
(23) Bidault, F.; Brett, D. J. L.; Middleton, P. H.; Brandon, N. P. J. Power Sources 2009, 187, 39.
-
[24]
(24) Gülzow, E.; Schulze, M.; Gerke, U. J. Power Sources 2006, 156, 1.
-
[25]
(25) Chen, K. Y.; Morris, J. C. Environ. Sci. Technol. 1972, 6, 529.
-
[26]
(26) Kleinjan,W. E.; Keizer, A.; Janssen, A. J. H. Water Res. 2005, 39, 4093.
-
[27]
(27) Fischer, H.; Schulz-Ekloff, G.;Wohrle, D. Chem. Eng. Technol. 1997, 20, 462.
-
-
[1]
Linbao Zhang , Weisi Guo , Shuwen Wang , Ran Song , Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009
-
[2]
Yongming Zhu , Huili Hu , Yuanchun Yu , Xudong Li , Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086
-
[3]
Xiaofeng Zhu , Bingbing Xiao , Jiaxin Su , Shuai Wang , Qingran Zhang , Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005
-
[4]
Hongyi LI , Aimin WU , Liuyang ZHAO , Xinpeng LIU , Fengqin CHEN , Aikui LI , Hao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480
-
[5]
Fengqiao Bi , Jun Wang , Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069
-
[6]
Kuaibing Wang , Honglin Zhang , Wenjie Lu , Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084
-
[7]
Jianfeng Yan , Yating Xiao , Xin Zuo , Caixia Lin , Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005
-
[8]
Jinyao Du , Xingchao Zang , Ningning Xu , Yongjun Liu , Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039
-
[9]
Yong Zhou , Jia Guo , Yun Xiong , Luying He , Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, 2024, 39(7): 330-336. doi: 10.3866/PKU.DXHX202310109
-
[10]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
-
[11]
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
-
[12]
Tiantian MA , Sumei LI , Chengyu ZHANG , Lu XU , Yiyan BAI , Yunlong FU , Wenjuan JI , Haiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351
-
[13]
Kun Xu , Xinxin Song , Zhilei Yin , Jian Yang , Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050
-
[14]
Caixia Lin , Zhaojiang Shi , Yi Yu , Jianfeng Yan , Keyin Ye , Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005
-
[15]
Hongbo Zhang , Yihong Tang , Suxia Zhang , Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013
-
[16]
Lu XU , Chengyu ZHANG , Wenjuan JI , Haiying YANG , Yunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431
-
[17]
Jing SU , Bingrong LI , Yiyan BAI , Wenjuan JI , Haiying YANG , Zhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414
-
[18]
Dan Li , Hui Xin , Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046
-
[19]
Yifei Cheng , Jiahui Yang , Wei Shao , Wanqun Zhang , Wanqun Hu , Weiwei Li , Kaiping Yang . Learning Goes Beyond the Written Word: Practical Insights from the “Leaf Electroplating” Popular Science Experiment. University Chemistry, 2024, 39(9): 319-327. doi: 10.3866/PKU.DXHX202310033
-
[20]
Shengbiao Zheng , Liang Li , Nini Zhang , Ruimin Bao , Ruizhang Hu , Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096
-
[1]
Metrics
- PDF Downloads(865)
- Abstract views(3077)
- HTML views(11)