Citation: ZHAN Wei-Shen, PAN Shi, WANG Qiao, LI Hong, ZHANG Yi. Comparison of D-SS and D-ST Dyes as Photo Sensitizers in Dye-Sensitized Solar Cells[J]. Acta Physico-Chimica Sinica, ;2012, 28(01): 78-84. doi: 10.3866/PKU.WHXB20122878 shu

Comparison of D-SS and D-ST Dyes as Photo Sensitizers in Dye-Sensitized Solar Cells

  • Received Date: 10 June 2011
    Available Online: 9 November 2011

  • The molecular structures, UV-Vis absorption spectra, and energy level structures of the dyes D-SS and D-ST were simulated using density functional theory, time-dependent density functional theory (TDDFT), and natural bond orbital analysis, which provided the physical mechanisms of dye-sensitized solar cells (DSSCs) containing D-ST and D-SS. The UV-Vis absorption spectrum of D-SS showed a significant red shift compared with that of D-ST and the molar absorption coefficient of D-SS was higher than that of D-ST. D-SS molecules should have a higher solar radiation photon-harvesting ability than D-ST molecules, but the energy level of the highest occupied molecular orbital (HOMO) of D-SS was higher than the redox energy level of the electrolyte (I-/I3-). As a result, an optically excited D-SS molecule cannot be successfully recovered by accepting an electron from the electrolyte after being oxidized by injecting an electron towards the TiO2 electrode. This limits the photon harvesting ability of D-SS molecules, and thereby significantly decreases the photovoltaic properties and energy conversion efficiency of DSSCs containing D-SS. This allows the photovoltaic properties of DSSCs containing D-SS to be understood, especially why its photovoltaic energy conversion efficiency is lower than that of DSSCs containing D-ST. The position of the HOMO energy level of dye-sensitized molecules is very important for the operation of DSSCs, and that of the organic sensitizer molecules used in DSSCs must be lower than the redox energy level of the electrolyte.
  • 加载中
    1. [1]

      (1) O'Regan, B.; Grätzel, M. Nature 1991, 353, 737.  

    2. [2]

      (2) Grätzel, M. J. Photochem. Photobiol. C 2003, 4, 145.  

    3. [3]

      (3) Grätzel, M. J. Photochem. Photobiol. A 2004, 164, 3.  

    4. [4]

      (4) Nazeeruddin, M. K.; Klein, C.; Liska, P.; Grätzel, M. Coord. Chem. Rev. 2005, 249, 1460.  

    5. [5]

      (5) Grätzel, M. Inorg. Chem, 2005, 44, 6841.  

    6. [6]

      (6) Peter, L. M. Phys. Chem. Chem. Phys. 2007, 9, 2630.

    7. [7]

      (7) Wang, Z. S.; Cui, Y.; Dan-oh, Y.; Kasada, C.; Shinpo, A.; Hara, K. J. Phys. Chem. C 2007, 111, 7224.  

    8. [8]

      (8) Chen, R.; Yang, X.; Tian, H.; Sun, L. C. J. Photochem. Photobiol. A-Chem. 2007, 189, 295.  

    9. [9]

      (9) Tian, H.; Yang, X.; Chen, R.; Pan, Y.; Li, L.; Hagfeldt, A.; Sun, L. C. Chem. Commun. 2007, No. 36, 3741.

    10. [10]

      (10) Kim, S.; Kim, D.; Choi, H.; Kang, M. S.; Song, K.; Kang, S. O.; Ko, J. Chem. Commun. 2008, No. 40, 4951.

    11. [11]

      (11) Ito, S.; Miura, H.; Uchida, S.; Takata, M.; Sumioka, K.; Liska, P.; Comte, P.; Péchy, P.; Grätzel, M. Chem. Commun. 2008, No. 41, 5194.

    12. [12]

      (12) Li, C.; Yum, J. H.; Moon, S. J.; Herrmann, A.; Eickemeyer, F.; Pschirer, N. G.; Erk, P.; Schöneboom, J.; Müllen, K.; Grätzel, M.; Nazeeruddin, M. K. ChemSusChem 2008, 1, 615.  

    13. [13]

      (13) Jin, Y.; Hua, J.;Wu,W.; Ma, X.; Meng, F. Synth. Met. 2008, 158, 64.  

    14. [14]

      (14) Burke, A.; Ito, S.; Snaith, H.; Bach, U.; Kwiatkowski, J.; Grätzel, M. Nano Lett. 2008, 8, 977.  

    15. [15]

      (15) Hagberg, D. P.; Marinado, T.; Karlsson, K. M.; Nonomura, K.; Qin, P.; Boschloo, G.; Brinck, T.; Hagfeldt, A.; Sun, L. C. J. Org. Chem. 2007, 72, 9550.  

    16. [16]

      (16) Qin, P.; Yang, X.; Chen, R.; Sun, L. C.; Marinado, T.; Edvinsson, T.; Boschloo, G.; Hagfeldt, A. J. Phys. Chem. C 2007, 111, 1853.  

    17. [17]

      (17) Boschloo, G.; Marinado, T.; Nonomura, K.; Edvinsson, T.; Agrios, A. G.; Hagberg, D. P.; Sun, L. C.; Quintana, M.; Karthikeyan, C. S.; Thelakkat, M.; Hagfeldt, A. Thin Solid Films 2008, 516, 7214.  

    18. [18]

      (18) Yen, Y. S.; Hsu, Y. C.; Lin, J. T.; Chang, C.W.; Hsu, C. P.; Yin, D. J. J. Phys. Chem. C 2008, 112, 12557.  

    19. [19]

      (19) Balanay, M. P.; Kim, D. H. Phys. Chem. Chem. Phys. 2008, 10, 5121.

    20. [20]

      (20) Ooyama, Y.; Harima, Y. Eur. J. Org. Chem. 2009, No. 18, 2903.

    21. [21]

      (21) Rochford, J.; Chu, D.; Hagfeldt, A.; Galoppini, E. J. Am. Chem. Soc. 2007, 129, 4655.  

    22. [22]

      (22) Chen, R.; Yang, X.; Tian, H.;Wang, X.; Hagfeldt, A.; Sun, L. C. Chem. Mater. 2007, 19, 4007.  

    23. [23]

      (23) Li, G.; Jiang, K J.; Li, Y. F.; Li, S. L.; Yang, L. M. J. Phys. Chem. C 2008, 112, 11591.  

    24. [24]

      (24) Marinado, T.; Hagberg, D. P.; Hedlund, M.; Edvinsson, T.; Johansson, E. M. J.; Boschloo, G.; Rensmo, H.; Brinck, T.; Sun, L. C.; Hagfeldty, A. Phys. Chem. Chem. Phys. 2009, 11, 133.

    25. [25]

      (25) Chen, Z.; Li, F.; Huang, C. H. Curr. Org. Chem. 2007, 11, 1241.  

    26. [26]

      (26) Tsai, M. S.; Hsu, Y. C.; Lin, J. T.; Chen, H. C.; Hsu, C. P. J. Phys. Chem. C 2007, 111, 18785.  

    27. [27]

      (27) Choi, H.; Lee, J. K.; Song, K. H.; Song, K.; Kang, S. O.; Ko, J. Tetrahedron 2007, 63, 1553.  

    28. [28]

      (28) Zhao, G. J.; Chen, R. K.; Sun, M. T.; Liu, J. Y.; Li, G. Y.; Gao, Y. L.; Han, K. L.; Yang, X. C.; Sun, L. C. Chem. Eur. J. 2008, 14, 6935.  

    29. [29]

      (29) Zhao, G. J.; Liu, J. Y.; Zhou, L. C.; Han, K. L. J. Phys. Chem. B 2007, 111, 8940.  

    30. [30]

      (30) Zhao, G. J.; Han, K. L. Biophys. J. 2008, 94, 38.  

    31. [31]

      (31) Kurashige, Y.; Nakajima, T.; Kurashige, S.; Hirao, K.; Nishikitani, Y. J. Phys. Chem. A 2007, 111, 5544.  

    32. [32]

      (32) Zhang, X.; Zhang, J. J.; Xia, Y. Y. J. Photochem. Photobiol. A-Chem. 2008, 194, 167.  

    33. [33]

      (33) Li, S. L.; Jiang, K. J.; Shao, K. F.; Yang, L. M. Chem. Commun. 2006, No. 26, 2792.

    34. [34]

      (34) Sayama, K. Tsuka shi, S.; Mori, T.; Hara, K.; Ohga, Y.; Shinpo, A.; Abe, Y.; Suga, S.; Arakawa, H. Sol. Energy Mater. Sol. Cells 2003, 80, 47.  

    35. [35]

      (35) De Angelis, F.; Fantacci, S.; Selloni, A.; Nazeeruddin, M. K. Chem. Phys. Lett. 2005, 415, 115.  

    36. [36]

      (36) Xu, Y.; Chen,W. K.; Cao, M. J.; Liu, S. H.; Li, J. Q.; Philippopoulos, A. I.; Falaras, P. Chem. Phys. 2006, 330, 204.  

    37. [37]

      (37) Sun, J.; Song, J.; Zhao, Y.; Liang,W. Z. J. Chem. Phys. 2007, 127, 234107.  

    38. [38]

      (38) Wang, Y. L.;Wu, G. S. Acta Phys. -Chim. Sin. 2008, 24, 552. [王溢磊, 吴国是. 物理化学学报, 2008, 24, 552.]  

    39. [39]

      (39) Li, H. X.; Pan, S. J.;Wang, X. F.; Xiao, T. Chin. J. Chem. Phys. 2008, 21, 263.  

    40. [40]

      (40) Zhang, C. R.;Wu, Y. Z.; Chen, Y. H.; Chen, H. S. Acta Phys. -Chim. Sin. 2009, 25, 53. [张材荣, 吴有智, 陈玉红, 陈宏善. 物理化学学报, 2009, 25, 53.]

    41. [41]

      (41) Zhan,W. S.; Pan, S.; Li, Y. Z.; Chen, M. D. Acta Phys. -Chim. Sin. 2009, 25, 2087. [詹卫伸, 潘石, 李源作, 陈茂笃. 物理化学学报, 2009, 25, 2087.]

    42. [42]

      (42) Sobolewski, A. L.; Domcke,W. J. Phys. Chem. A 1999, 103, 4494.  

    43. [43]

      (43) Sobolewski, A. L.; Domcke,W. J. Phys. Chem. A 2004, 108, 10917.  

    44. [44]

      (44) Sobolewski, A. L.; Domcke,W.; Hättig, C. J. Phys. Chem. A 2006, 110, 6301.  

    45. [45]

      (45) Zhao, G. J.; Han, K. L. J. Phys. Chem. A 2007, 111, 2469.  

    46. [46]

      (46) Zhao, G. J.; Han, K. L. J. Phys. Chem. A 2007, 111, 9218.  

    47. [47]

      (47) Wang, Y. L.;Wu, G. S. Acta Phys. -Chim. Sin. 2007, 23, 1831. [王溢磊, 吴国是. 物理化学学报, 2007, 23, 1831.]  

    48. [48]

      (48) Zhang, C. R.; Liu, Z. J.; Chen, Y. H.; Chen, H. S.;Wu, Y. Z.; Yuan, L. H. J. Mol. Struct.-Theochem 2009, 899, 86.  

    49. [49]

      (49) Zhan,W. S.; Pan, S.; Li, Y. Z.; Chen, M. D. Acta Phys. -Chim. Sin. 2010, 26, 1408. [詹卫伸, 潘石, 李源作, 陈茂笃. 物理化学学报, 2010, 26, 1408.]

    50. [50]

      (50) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 03, Revision C.02; Gaussian Inc.: Pittsburgh, PA, 2003.

    51. [51]

      (51) Becke, A. D. J. Chem. Phys. 1993, 98, 1372.  

    52. [52]

      (52) Becke, A. D. J. Chem. Phys. 1993, 98, 5648.  

    53. [53]

      (53) Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. J. Phys. Chem. 1994, 98, 11623.  

    54. [54]

      (54) Bene, J. E. D.; Person,W. B.; Szczepaniak, K. J. Phys. Chem. 1995, 99, 10705.  

    55. [55]

      (55) Hertwig, R. H.; Koch,W. Chem. Phys. Lett. 1997, 268, 345.  

    56. [56]

      (56) Tozer, D. J.; Handy, N. C. J. Chem. Phys. 1998, 109, 10180.  

    57. [57]

      (57) Yanai, T.; Tew, D. P.; Handy, N. C. Chem. Phys. Lett. 2004, 393, 51.  

    58. [58]

      (58) Barone, V.; Cossi, M. J. Phys. Chem. A 1998, 102, 1995.  

    59. [59]

      (59) Klamt, A. J. Phys. Chem. 1995, 99, 2224.  

    60. [60]

      (60) Klamt, A. J. Phys. Chem. 1996, 100, 3349.  

    61. [61]

      (61) Reed, A. E.;Weinstock, R. B.;Weinhold, F. J. Chem. Phys. 1985, 83, 735.

    62. [62]

      (62) Cossi, M.; Barone, V.; Cammi, R.; Tomasi, J. Chem. Phys. Lett. 1996, 255, 327.  

    63. [63]

      (63) Foresman, J. B.; Keith, T. A.;Wiberg, K. B.; Snoonian, J.; Frisch, M. J. J. Phys. Chem. 1996, 100, 16098.  

    64. [64]

      (64) Cossi, M.; Barone, V.; Mennucci, B.; Tomasi, J. Chem. Phys. Lett. 1998, 286, 253.  

    65. [65]

      (65) Klamt, A.; Jonas, V.; Bürger, T.; Lohrenz, J. C.W. J. Phys. Chem. A 1998, 102, 5074.  

    66. [66]

      (66) Cossi, M.; Rega, N.; Scalmani, G.; Barone, V. J. Comput. Chem. 2003, 24, 669.  

  • 加载中
    1. [1]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    2. [2]

      Feng Zheng Ruxun Yuan Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027

    3. [3]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    4. [4]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    5. [5]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    6. [6]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    7. [7]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    8. [8]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

    9. [9]

      Yipeng Zhou Chenxin Ran Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096

    10. [10]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    11. [11]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    12. [12]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    13. [13]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    14. [14]

      Jia Yao Xiaogang Peng . Theory of Macroscopic Molecular Systems: Theoretical Framework of the Physical Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 27-37. doi: 10.12461/PKU.DXHX202408117

    15. [15]

      Yanxin Wang Hongjuan Wang Yuren Shi Yunxia Yang . Application of Python for Visualizing in Structural Chemistry Teaching. University Chemistry, 2024, 39(3): 108-117. doi: 10.3866/PKU.DXHX202306005

    16. [16]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    17. [17]

      Wenliang Wang Weina Wang Sufan Wang Tian Sheng Tao Zhou Nan Wei . “Schrödinger Equation – Approximate Models – Core Concepts – Simple Applications”: Constructing a Logical Framework and Knowledge Graph of Atom and Molecule Structures. University Chemistry, 2024, 39(8): 338-343. doi: 10.3866/PKU.DXHX202312084

    18. [18]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    19. [19]

      Yuqiao Zhou Weidi Cao Shunxi Dong Lili Lin Xiaohua Liu . Study on the Teaching Reformation of Practical X-ray Crystallography. University Chemistry, 2024, 39(3): 23-28. doi: 10.3866/PKU.DXHX202303003

    20. [20]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

Metrics
  • PDF Downloads(1028)
  • Abstract views(3323)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return