Citation: HOU Ruo-Bing, WANG Bei-Bei, . One-Electron Redox Characteristics of One-Hydroxyl Radical Adducts of A-T Base Pairs[J]. Acta Physico-Chimica Sinica, ;2012, 28(01): 73-77. doi: 10.3866/PKU.WHXB20122873 shu

One-Electron Redox Characteristics of One-Hydroxyl Radical Adducts of A-T Base Pairs

  • Corresponding author:
  • Received Date: 1 August 2011
    Available Online: 26 October 2011

  • The one-electron redox characteristics of one-hydroxyl radical adducts of adenine-thymine base pairs were calculated using density functional theory at the B3LYP/DZP ++//B3LYP/6-31 ++ G(d,p) level. The computational results indicate that all eight adducts are strong oxidizing agents and very weak reducing agents. For the AC2-T, AC4-T, and AC5-T adducts electron capture causes a hydrogen atom migration from the N3 site of thymine to the N1 site of adenine. The hydrogen atom transfer reactions in the anion adducts are attributable to a higher electron density of the adenine moiety. The higher electron density favors the formation of a new N-H bond on the adenine base.
  • 加载中
    1. [1]

      (1) Valko, M.; Izakovic, M.; Mazur, M.; Rhodes, C. J.; Telser, J. Mol. Cell. Biochem. 2004, 266, 37.  

    2. [2]

      (2) Cadet, J.; Douki, T.; Gasparutto, D.; Ravanat, J. L. Mut. Res. 2003, 531, 5.  

    3. [3]

      (3) Dizdaroglu, M.; Jaruga, P.; Birincioglu, M.; Rodriguez, H. Free Rad. Bio. Med. 2002, 32, 1102.  

    4. [4]

      (4) Schärer, O. D. Angew. Chem. Int. Edit. 2003, 42, 2946.  

    5. [5]

      (5) Ober, M.; Linne, U.; Gierlich, J.; Carell, T. Angew. Chem. Int. Edit. 2003, 42, 4947.  

    6. [6]

      (6) Burrows, C. J.; Muller, J. G. Chem. Rev. 1998, 98, 1109.  

    7. [7]

      (7) Breen, A. P.; Murphy, J. A. Free Radic. Bio. Med. 1995, 18, 1033.  

    8. [8]

      (8) Steenken, S. Chem. Rev. 1989, 89, 503.  

    9. [9]

      (9) Piccirilli, J. A.; Krauch, T.; Moroney, S. E.; Benner, S. A. Nature 1990, 343, 33.  

    10. [10]

      (10) Hou, R. B.; Li,W.W.; Yi, X. H. Acta Phys. -Chim. Sin. 2009, 25, 291. [侯若冰, 李伟伟, 义祥辉. 物理化学学报, 2009, 25, 291.]

    11. [11]

      (11) Shi, J. Y.; Dong, L. H.; Liu, Y. J. Acta Phys. -Chim. Sin. 2010, 26, 3329. [史俊友, 董丽花, 刘永军. 物理化学学报, 2010, 26, 3329.]

    12. [12]

      (12) Rienstra-Kiracofe, J. C.; Tschumper, G. S.; Schaefer, H. F.; Nandi, S.; Ellison, G. B. Chem. Rev. 2002, 102, 231.  

    13. [13]

      (13) Hou, R. B.; Gu, J. D.; Xie, Y. M.; Yi, X. H.; Schaefer, H. F. J. Phys. Chem. B 2005, 109, 22053.  

    14. [14]

      (14) Li,W.W.; Hou, R. B.; Sun, Y. L. Acta Phys. -Chim. Sin. 2010, 26, 2272. [李伟伟, 侯若冰, 孙彦丽. 物理化学学报, 2010, 26, 2272.]

    15. [15]

      (15) Millefiori, S.; Alparone, A.; Millefiori, A.; Vanella, A. Biophys. Chem. 2008, 132, 139.  

    16. [16]

      (16) Kishora, S.; Dhayalb, S.; Mathurc, M.; Ramaniah, L. M. Mol. Phys. 2008, 106, 2289.  

    17. [17]

      (17) Bao, X. G.;Wang, J.; Gu, J. D.; Leszczynski, J. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 5658.  

    18. [18]

      (18) Hou, R. B.; Li,W.W.; Shen, X. C. Acta Phys. -Chim. Sin. 2008, 24, 269. [侯若冰, 李伟伟, 沈星灿. 物理化学学报, 2008, 24, 269.]

    19. [19]

      (19) Close, D. M. J. Phys. Chem. A 2008, 112, 8411.  

    20. [20]

      (20) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 03, Revision B.03; Gaussian Inc.: Pittsburgh, PA, 2003.

    21. [21]

      (21) Reed, A. E.;Weinstock, R. B.;Weinhold, F. J. Chem. Phys. 1985, 83, 735.  

    22. [22]

      (22) Reed, A. E.;Weinhold, F. J. Chem. Phys. 1985, 83, 1736.  

    23. [23]

      (23) Reed, A. E.; Curtiss, L. A.;Weinhold, F. Chem. Rev. 1988, 88, 899.  

    24. [24]

      (24) Reed, A. E.; Schleyer, P. v. R. J. Am. Chem. Soc. 1990, 112, 1434.  

    25. [25]

      (25) Glendening, E. D.; Reed, A. E.; Carpenter, J. E.;Weinhold, F. NBO, Version 3.1.

    26. [26]

      (26) Cossi, M.; Barone, V.; Cammi, R.; Tomasi, J. Chem. Phys. Lett. 1996, 255, 327.  

    27. [27]

      (27) Crespo-Hernández, C. E.; Arce, R.; Ishikawa, Y.; rd, L.; Leszczynski, J.; Close, D. M. J. Phys. Chem. A 2004, 108, 6373.  

  • 加载中
    1. [1]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    2. [2]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    3. [3]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    4. [4]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    5. [5]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    6. [6]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    7. [7]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    8. [8]

      Yuan GAOYiming LIUChunhui WANGZhe HANChaoyue FANJie QIU . A hexanuclear cerium oxo cluster stabilized by furoate: Synthesis, structure, and remarkable ability to scavenge hydroxyl radicals. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 491-498. doi: 10.11862/CJIC.20240271

    9. [9]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    10. [10]

      Jingwen Wang Minghao Wu Xing Zuo Yaofeng Yuan Yahao Wang Xiaoshun Zhou Jianfeng Yan . Advances in the Application of Electrochemical Regulation in Investigating the Electron Transport Properties of Single-Molecule Junctions. University Chemistry, 2025, 40(3): 291-301. doi: 10.12461/PKU.DXHX202406023

    11. [11]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    12. [12]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    13. [13]

      Yaqin Zheng Lian Zhuo Meng Li Chunying Rong . Enhancing Understanding of the Electronic Effect of Substituents on Benzene Rings Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 193-198. doi: 10.12461/PKU.DXHX202406119

    14. [14]

      Tong Zhou Jun Li Zitian Wen Yitian Chen Hailing Li Zhonghong Gao Wenyun Wang Fang Liu Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005

    15. [15]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    16. [16]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    17. [17]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    18. [18]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    19. [19]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    20. [20]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

Metrics
  • PDF Downloads(674)
  • Abstract views(2204)
  • HTML views(11)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return