Citation: XU Zong-Ping, ZHAO Yan-Ying, WANG Hui-Gang, ZHENG Xu-Ming. Resonance Raman Spectroscopy and Density Functional Theory Investigations on the Excited State Structural Dynamics of N-Methylpyrrole-2-carboxaldehyde and Its Solvent Effect[J]. Acta Physico-Chimica Sinica, ;2012, 28(01): 65-72. doi: 10.3866/PKU.WHXB20122865 shu

Resonance Raman Spectroscopy and Density Functional Theory Investigations on the Excited State Structural Dynamics of N-Methylpyrrole-2-carboxaldehyde and Its Solvent Effect

  • Received Date: 30 August 2011
    Available Online: 7 November 2011

    Fund Project: 国家重点基础研究发展规划(2007CB815203) (2007CB815203) 国家自然科学基金(21033002, 20803066) (21033002, 20803066)浙江省自然科学基金(Y4090161)资助项目 (Y4090161)

  • Resonance Raman spectra of N-Methylpyrrole-2-carboxaldehyde (NMPCA) were obtained and seven excitations covered the A- and B-band electronic absorptions. The electronic excitations and the Franck-Condon region structural dynamics of NMPCA were studied by resonance Raman spectroscopy and time-dependent density functional theory (TD-DFT) calculations. The A- and B-band electronic absorptions were assigned to ππ* transitions on the basis of the TD-B3LYP/6-311 ++ G(d,p) level of theory. The resonance Raman spectra showed Raman intensity in the fundamentals, the overtones and the combination bands for about 11-13 vibrational modes (A-band excitation) or 7-11 vibrational modes (B-band excitation). These were predominately due to the C=O stretch mode ν7, the ring deformation+N1- C6 stretch ν17, the ring deformation mode ν21 and the C6-N1-C2/C2-C3-C4 anti-symmetry stretch mode ν14. This indicates that the Franck-Condon region Sπ structural dynamics of NMPCA mainly occurs along the C=O stretch, the ring deformation, and the N1-C6 stretch reaction coordinates. In a certain solvent and under different excitation wavelengths the relative intensity of the C=O stretch mode ν7 versus the C6-N1-C2/C2-C3 -C4 anti-symmetry stretch mode ν14 shows an intense to weak to intense change as the excitation wavelengths decrease. This intensity variation directly reflects the Sn/Sπ state-mixing or crossing of the potential energy surfaces in the Franck-Condon region. Solvents can efficiently tune the Franck- Condon region Sn/Sπ state-mixing or crossing processes.
  • 加载中
    1. [1]

      (1) Wagner, P. J. Acc. Chem. Res. 1971, 4, 168.  

    2. [2]

      (2) Gilbert, A.; Bag tt, J. Essentials of Molecular Photochemistry; CRC Press: Boca Raton, FL, 1991.

    3. [3]

      (3) Horspool,W.; Armesto D. Organic Photochemistry-A Comprehensive Treatment; Ellis Horwood: New York, 1992.

    4. [4]

      (4) Smolarek, J.; Zwarich, R.; odman, L. J. Mol. Spectrosc. 1972, 43, 416.  

    5. [5]

      (5) Abe, H.; Kamei, S.; Mikami, N.; Ito M. Chem. Phys. Lett. 1984, 109, 217.  

    6. [6]

      (6) Ohmori, N.; Suzuki, T.; Ito, M. J. Phys. Chem. 1988, 92, 1086.  

    7. [7]

      (7) Robin, M. B.; Kuebler, N. A. J. Am. Chem. Soc. 1975, 97, 4822.

    8. [8]

      (8) Berger, M.; Steel, C. J. Am. Chem. Soc. 1975, 97, 4817.  

    9. [9]

      (9) Zhao, H. Q.; Cheung, Y. S.; Liao, C. L.; Liao, C. X.; Ng, C. Y.; Li,W. K. J. Chem. Phys. 1997, 107, 7230.  

    10. [10]

      (10) Anand, S.; Zamari, M. M.; Menkir, G.; Levis, R. J.; Schlegel, H. B. J. Phys. Chem. A 2004, 108, 3162.  

    11. [11]

      (11) Hirata, Y.; Lim, E. C. J. Chem. Phys. 1980, 72, 5505.  

    12. [12]

      (12) Hirata, Y.; Lim, E. C. Chem. Phys. Lett. 1980, 71, 167.  

    13. [13]

      (13) Koyanagi, M.; odman, L.; Chem. Phys. 1979, 39, 237.  

    14. [14]

      (14) Hayashi, H.; Nagakura, S. Mol. Phys. 1974, 27, 969.  

    15. [15]

      (15) Koyanagi, M.; Zwarich, R. J.; odman, L. J. Chem. Phys. 1972, 56, 3044.  

    16. [16]

      (16) Kiritani, M.; Yoshii, T.; Hirota, N.; Baba, M.; J. Phys. Chem. 1994, 98, 11265.  

    17. [17]

      (17) Villa, E.; Amirav, A.; Chen,W.; Lim, E. C. Chem. Phys. Lett. 1988, 147, 43.  

    18. [18]

      (18) Sneh, O.; Cheshnovsky, O. J. Phys. Chem. 1991, 95, 7154.  

    19. [19]

      (19) Fang,W. H.; Phillips, D. L. ChemPhysChem 2002, 3, 889.  

    20. [20]

      (20) Wang, Y.W.; He, H. Y.; Fang,W. H. J. Mol. Struct.- Theochem 2003, 634, 281.  

    21. [21]

      (21) Ding,W. J.; Fang,W. H. Progress in Chemistry 2007, 19, 1449. [丁万见, 方维海. 化学进展, 2007, 19, 1449.]

    22. [22]

      (22) Srinivasan, R.; Feenstra, J. S.; Park, S. T.; Xu, S. J.; Zewail, A. H. Science 2005, 307, 558.  

    23. [23]

      (23) Feenstra, J. S.; Park, S. T.; Zewail, A. H. J. Chem. Phys. 2005, 123, 221104.  

    24. [24]

      (24) Park, S. T.; Feenstra, J. S.; Zewail, A. H. J. Chem. Phys. 2006, 124, 174707.  

    25. [25]

      (25) Ma, Y.; Pei, K.; Zheng, X.; Li H. Chem. Phys. Lett. 2007, 449, 107.  

    26. [26]

      (26) Li, S. P.;Wu, G. M.; Zheng, X. M. Chem. J. Chin. Univ. 2004, 25, 1495. [李少鹏, 吴光明, 郑旭明. 高等学校化学学报, 2004, 25, 1495.]

    27. [27]

      (27) Myer, A. B.; Li, B.; Ci, X. J. Chem. Phys. 1988, 89, 1876.  

    28. [28]

      (28) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al . Gaussian 03, Revision B.02; Gaussian Inc.: Pittsburgh, PA, 2003.

    29. [29]

      (29) Rauhut, G.; Pulay, P. J. Phys. Chem. 1995, 99, 3093.  

    30. [30]

      (30) Marian, C. M. J. Chem. Phys. 2005, 122, 104314.  

    31. [31]

      (31) Galica, G. E.; Johnson, B. R.; Kinsey, J. L.; Hale, M. O. J. Phys. Chem. 1991, 95, 7994.  

    32. [32]

      (32) Markel, F.; Myers, A. B. J. Chem. Phys. 1993, 98, 21.  

    33. [33]

      (33) Phillips, D. L.; Myers, A. B. J. Chem. Phys. 1991, 95, 226.  

    34. [34]

      (34) Kwok,W. M.; Phillips, D. L. J. Chem. Phys. 1996, 104, 9816.  

    35. [35]

      (35) Zheng, X.; Phillips, D. L. Chem. Phys. Lett. 1998, 286, 79.  

    36. [36]

      (36) Santoro, F.; Barone, V.; Gustavsson, T.; Improta, R. J. Am. Chem. Soc. 2006, 128, 16312.  

  • 加载中
    1. [1]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    2. [2]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    3. [3]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    4. [4]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    5. [5]

      Jingyi Chen Fu Liu Tiejun Zhu Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111

    6. [6]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    7. [7]

      Zhaoyue Lü Zhehao Chen Yi Ni Duanbin Luo Xianfeng Hong . Multi-Level Teaching Design and Practice Exploration of Raman Spectroscopy Experiment. University Chemistry, 2024, 39(11): 304-312. doi: 10.12461/PKU.DXHX202402047

    8. [8]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    9. [9]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    10. [10]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    11. [11]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    12. [12]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    13. [13]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    14. [14]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    15. [15]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    16. [16]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    17. [17]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    18. [18]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    19. [19]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    20. [20]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

Metrics
  • PDF Downloads(822)
  • Abstract views(2378)
  • HTML views(13)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return