Citation: WANG Chuan-Ge, ZENG Fan-Gui, PENG Zhi-Long, LI Xia, ZHANG Li. Kinetic Analysis of a Pyrolysis Process and Hydrogen Generation of Humic Acids of Yimin Lignite Fusain Using the Distributed Activation Energy Model[J]. Acta Physico-Chimica Sinica, ;2012, 28(01): 25-36. doi: 10.3866/PKU.WHXB20122825 shu

Kinetic Analysis of a Pyrolysis Process and Hydrogen Generation of Humic Acids of Yimin Lignite Fusain Using the Distributed Activation Energy Model

  • Received Date: 6 September 2011
    Available Online: 2 November 2011

    Fund Project: 国家自然科学基金(41072116, 40772097, 40572094) (41072116, 40772097, 40572094)高等学校博士学科点专项科研基金(20091402110002)资助项目 (20091402110002)

  • The thermal behavior of humic acids of fusain (F-HA) and humic acids of demineralized fusain (DF-HA) were investigated at heating rates of 5, 20, and 50 °C·min-1 using an open system thermogravimetric analyzer coupled to a quadrupole thermogravimetry mass spectrometer (TG-MS). The pyrolytic and hydrogen generation kinetics were analyzed using the distributed activation energy model (DAEM) and the distribution functions of the activation energy were obtained. The results indicated: (1) the distribution function of the activation energy for F-HA has an asymptotic approximation to a Gaussian distribution during pyrolysis. Moreover, it has some symmetry properties and the same peak value as a standard Gaussian distribution. The distribution function of the activation energy for DF-HA has an asymptotic approximation to a Gaussian distribution during pyrolysis and its peak value is less than that of a standard Gaussian distribution. According to the conversion ratio vs temperature, activation energy relationships and the thermal mass loss features of humic acids, four and five stages of a general pyrolytic process were found for F-HA and DF-HA, respectively. The chemical reactions for each stage of the pyrolytic process are discussed in detail. (2) The distribution functions of the activation energy of hydrogen generation for F-HA and DF-HA have an asymptotic approximation to a Gaussian distribution during pyrolysis. The activation energy of hydrogen generation increased with an increase in the conversion yields but it also showed staged features. Based on the kinetic characteristics of their generation during pyrolysis their hydrogen generation processes can be divided into five stages, which reflect the different chemical reaction mechanisms. (3) The demineralization of Yimin fusain influences the thermal behavior, kinetics of the pyrolytic processes and the hydrogen generation of humic acid.
  • 加载中
    1. [1]

      (1) Han, D. X.; Yang, Q. Coal Geology of China; Coal Industry Press: Beijing, 1979; Vol.1, pp 14-15. [韩德馨, 杨起. 中国煤田地质学. 北京: 煤炭工业出版社, 1979: Vol.1, 14-15.]

    2. [2]

      (2) Huang, D. F.; Qin, K. Z.;Wang, T. G.; Zhao, X. G.; Xu, Y. Q. Oil from Coal: Formation and Mechanism; Petroleum Industry Press: Beijing, 1955; pp 5-29. [黄第藩, 秦匡宗, 王铁冠, 赵锡嘏, 许云秋. 煤成油的形成和成烃机理. 北京: 石油工业出版社, 1995: 5-29.]

    3. [3]

      (3) Cramer, B. Org. Geochem. 2004, 35, 379.  

    4. [4]

      (4) Fu, J. M.; Qin, K. Z. Geochemistry of Kerogen; Science & Technology Press of Guangdong: Guangzhou, 1995; pp 268-269, 546-552. [傅家谟, 秦匡宗. 干酪根地球化学. 广州: 广东科技出版社, 1995: 268-269, 546-552.]

    5. [5]

      (5) Niksa, S.; Kerstein, A. R. Energy Fuels 1991, 5, 647.  

    6. [6]

      (6) Niksa, S.; Kerstein, A. R. Energy Fuels 1991, 5, 665.  

    7. [7]

      (7) Niksa, S.; Kerstein, A. R. Energy Fuels 1991, 5, 673.  

    8. [8]

      (8) Niksa, S. Energy Fuels 1994, 8, 659.  

    9. [9]

      (9) Niksa, S. Energy Fuels 1994, 8, 671.  

    10. [10]

      (10) Niksa, S. Energy Fuels 1995, 9, 467.  

    11. [11]

      (11) Niksa, S. Energy Fuels 1996, 10, 173.  

    12. [12]

      (12) Solomon, P. R.; Hamblen, D. G.; Carangelo, R. M. Energy Fuels 1988, 2, 405.  

    13. [13]

      (13) Solomon, P. R.; Hamblen, D. G.; Carangelo, R. M. Combust. Flame 1988, 71, 137.  

    14. [14]

      (14) Grant, D. M.; Pugmire, R. J. Energy Fuels 1989, 3, 175.  

    15. [15]

      (15) Fletcher, T. H.; Kerstein, A. R. Energy Fuels 1990, 4, 54.  

    16. [16]

      (16) Arenillas, A.; Rubiera, F.; Pevida, C.; Pis, J. J. J. Anal. Appl. Pyrolysis. 2001, 58, 685.  

    17. [17]

      (17) Vand, V. Proc. Phys. Soc. (London) 1942, A55, 222.

    18. [18]

      (18) Miura, K. Energy Fuels 1995, 9, 302.  

    19. [19]

      (19) Hashimoto, K.; Miura, K.;Watanabe, T. AICHE J. 1982, 28, 737.  

    20. [20]

      (20) Miura, K.; Maki, T. Energy Fuels 1998, 12, 864.  

    21. [21]

      (21) Sonobe, T.;Worasuwannarak, H. N. Fuel 2008, 87, 414.  

    22. [22]

      (22) Quan, C.; Li, A. M.; Gao, N. B. Waste Manage. 2009, 2353.

    23. [23]

      (23) Liu, X. G.; Li, B. Q. J. Fuel Chem. Technol. 2001, 29, 54. [刘旭光, 李保庆. 燃料化学学报, 2001, 29, 54.]

    24. [24]

      (24) Sun, B. Z.;Wang, H. G.; Guan, X. H. Chem. Eng. (China) 2007, 35, 26. [孙佰仲, 王海刚, 关晓辉. 化学工程, 2007, 35, 26.]

    25. [25]

      (25) Yan, J. H.; Zhu, H. M.; Jiang, X. G.; Chi, Y.; Cen, K. F. J. Hazard. Mater. 2009, 162, 646.  

    26. [26]

      (26) Heidenreich, C. A.; Yan, H. M.; Zhang, D. K. Fuel 1999, 78, 557.  

    27. [27]

      (27) Chen,W. M. Coal Sci. Technol. 1994, 22, 40. [陈文敏. 煤炭科学技术, 1994, 22, 40.]

    28. [28]

      (28) Yang, J. H.; Chen,W. M.; Duan, Y. L. Chemical Examination Manual of Coal; Coal Industry Press: Beijing, 2004; pp 584-592. [杨金和, 陈文敏, 段云龙. 煤炭化验手册. 北京: 煤炭工业出版社, 2004: 584-592. ]

    29. [29]

      (29) Swaine, D. Org. Geochem. 1992, 78, 259.

    30. [30]

      (30) Sugano, M.; Mashimo, K.;Wainai, T. Fuel 1999, 78, 945.  

    31. [31]

      (31) Steel, K. M.; Besida, J.; O'Donnell, T. A.;Wood, D. G. Fuel Process. Technol. 2001, 70, 171.  

    32. [32]

      (32) Arenillas, A.; Rubiera, F.; Pis, J. J. J. Anal. Appl. Pyrolysis. 1999, 50, 31.  

    33. [33]

      (33) Shen, X. The Kinetics Study of Different Thermal, Thermo Gravimetry Analysis and Nonisothermal Solid Phase; Metallurgical Industry Press: Beijing, 1995; pp 68-70. [沈兴. 差热、热重分析与非等温固相反应动力学. 北京: 冶金工业出版社, 1995: 68-70.]

    34. [34]

      (34) Painter, P. C.; Opaprakasit, P.; Scaroni, A. Energy Fuels 2000, 14, 1115.  

    35. [35]

      (35) Opaprakasit, P.; Scaroni, A.W.; Painter, P. C. Energy Fuels 2002, 16, 543.  

    36. [36]

      (36) Zeng, F. G.; Jia, J. B. Acta Phys. -Chim. Sin. 2009, 25, 1117. [曾凡桂, 贾建波. 物理化学学报, 2009, 25, 1117.]

    37. [37]

      (37) Zhu, X. D.; Zhu, Z. B.; Han, C. J.; Tang, L. H. J. East China Univ. Sci. Technol. 2000, 26, 14. [朱学栋, 朱子彬, 韩崇家, 唐黎华. 华东理工大学学报, 2000, 26, 14.]

    38. [38]

      (38) Sun, Q. L.; Li,W.; Chen, H. K.; Li, B. Q. J. China Univ. Min. Eng. 2003, 32, 665. [孙庆雷, 李文, 陈皓侃, 李宝庆. 中国矿业大学学报, 2003, 32, 665.]

    39. [39]

      (39) Faure, P.; Jeanneau, L.; Lannuzel, F. Org. Geochem. 2006, 37, 1900.  

    40. [40]

      (40) Chen, C. X.; Sun, X. X.; Ma, L. Y. Prog. Nat. Sci. 1995, 5, 83. [陈彩霞, 孙学信, 马毓义. 自然科学进展, 1995, 5, 83.]

    41. [41]

      (41) Porada, S. Fuel 2004, 83, 1191.  

  • 加载中
    1. [1]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    2. [2]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    3. [3]

      Jing JINZhuming GUOZhiyin XIAOXiujuan JIANGYi HEXiaoming LIU . Tuning the stability and cytotoxicity of fac-[Fe(CO)3I3]- anion by its counter ions: From aminiums to inorganic cations. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 991-1004. doi: 10.11862/CJIC.20230458

    4. [4]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    5. [5]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    6. [6]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    7. [7]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    8. [8]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    9. [9]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    10. [10]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    11. [11]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    12. [12]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    13. [13]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    14. [14]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    15. [15]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    16. [16]

      Weigang Zhu Yun Tian Zhicheng Zhang Hongling Gao . Reform Exploration of Student Performance Assessment in Inorganic Chemistry Experimental Courses. University Chemistry, 2024, 39(10): 203-209. doi: 10.12461/PKU.DXHX202404114

    17. [17]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    18. [18]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    19. [19]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    20. [20]

      Xin Lv Hongxing Zhang Kaibo Duan Wenhui Dai Zhihui Wen Wei Guo Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, 2024, 39(5): 70-79. doi: 10.3866/PKU.DXHX202309090

Metrics
  • PDF Downloads(879)
  • Abstract views(2822)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return