Citation: MARÍ Bernabé, SINGH Krishan-Chander, MOLLAR Miguel, MOYA Mónica. Growth Mechanism and Morphology of ZnO/eosin-Y Hybrid Thin Films[J]. Acta Physico-Chimica Sinica, ;2012, 28(01): 251-256. doi: 10.3866/PKU.WHXB201228251 shu

Growth Mechanism and Morphology of ZnO/eosin-Y Hybrid Thin Films

  • Received Date: 8 August 2011
    Available Online: 8 November 2011

    Fund Project: The project was supported by the Spanish vernment through MCINN Grant (MAT2009-14625-C03-03) (MAT2009-14625-C03-03)MEC Financial Fund(SAB2010-0019) for Singh, K. C. (SAB2010-0019)

  • Thin hybrid films of ZnO/eosin-Y were prepared by electrodeposition at -0.8 and -0.9 V in aqueous and non-aqueous baths at temperatures ranging from 40 to 90 °C with dye concentrations of 100 and 400 μmol·L-1. The films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray analysis (EDX), and absorption spectroscopy. The films prepared in a non-aqueous bath were non-porous and did not adsorb dye molecules on their surface. However, the films grown in aqueous media were porous in nature and adsorbed dye during the deposition of ZnO. Preferential growth of the film along the (002) face was observed, and the highest crystallinity was achieved when the film was deposited at 60 °C. The maximum absorption was achieved for the films grown at 60 to 70 °C, a deposition potential of -0.9 V, and a dye concentration of 100 μmol·L-1.
  • 加载中
    1. [1]

      (1) Bube, R. H. Photoconductivity of Solids;Wiley: New York, 1960.

    2. [2]

      (2) Zink Oxide Bulk, Thin Films and Nanostructures; Jagadish, C., Pearton, S. Eds.; Elsevier: Amsterdam, 2006.

    3. [3]

      (3) Gupta, T. K. J. Am. Ceram. Soc. 1990, 73, 1817.  

    4. [4]

      (4) Look, D. C. Mater. Sci. Eng. 2001, 80, 383.  

    5. [5]

      (5) Yamamoto, T.; Shiosaki, T.; Kawabata, A. J. Appl. Phys. 1980, 51, 3113.  

    6. [6]

      (6) Aeugle, T. H.; Bialas, K.; Heneka, H.; Pleyer,W. Thin Solid Films 1991, 201, 293.  

    7. [7]

      (7) Chatterjee, A. P. ; Mitra, P.; Mukhopadhyay, A. K. J. Mater. Sci. 1999, 34, 4225.  

    8. [8]

      (8) Nicoll, F. H. Appl. Phys. Lett. 1996, 9, 13.

    9. [9]

      (9) Bagnall, D. M.; Chen, Y. F.; to, T.; Koyama, S.; Shen, M. Y.; Yao, T.; Zhu, Z. Appl. Phys. Lett. 1997, 70, 2230.  

    10. [10]

      (10) Wiersma, D. Nature, 2000, 406, 132.  

    11. [11]

      (11) Nanto, H.; Minami, T.; Shooji, S.; Takata, S. J. Appl. Phys. 1984, 55, 1029.  

    12. [12]

      (12) Natsume, Y.; Sakata, H.; Hirayama, T.; Yanagida, H. J. Appl. Phys. 1992, 72, 4203.  

    13. [13]

      (13) Okamura, T.; Seki, Y.; Nagakary, S.; Okushi, H. Jpn. J. Appl. Phys. 1992, 31, 762.  

    14. [14]

      (14) Aranovich, J.; Ortiz, A.; Bube, R. H. J. Vac. Sci. Technol. 1979, 16, 994.  

    15. [15]

      (15) Izaki, M.; Omi, T. Appl. Phys. Lett. 1996, 68, 2439.  

    16. [16]

      (16) Yoshida, T.; Terada, K.; Schlettwein, D.; Oekermann, T.; Sugiura, T.; Minoura, H. Advanced Materials 2000, 12, 1214.  

    17. [17]

      (17) Lee,W. J.; Okada, H.;Wakahara, A.; Yoshida, A. Ceramics International 2006, 32, 495.  

    18. [18]

      (18) Suri, P.; Mehra, R. M. Solar Energy Materials and Solar Cells 2007, 91, 518.  

    19. [19]

      (19) Suri, P.; M. Panwar, M.; Mehra, R. M. Materials Science-Poland 2007, 25, 137.

    20. [20]

      (20) Wu, J.; Chen, G. R.; Yang, H. H.; Ku, C. H.; Lai, J. Y. Appl. Phys. Lett. 2007, 90, 213.

    21. [21]

      (21) Hara, K.; Horiguchi, T.; Kinoshita, T.; Sayama, K.; Sugihara, H.; Arakawa, H. Solar Energy Materials and Solar Cells 2000, 64, 115.  

    22. [22]

      (22) Matsumura, M.; Matsudaira, S.; Tsubomura, H.; Takata, M.; Yanagida, H. Industrial & Engineering Chemistry Product Research and Development 1980, 19, 415.  

    23. [23]

      (23) O'Regan, B.; Grätzel, M. Nature 1991, 353, 737.  

    24. [24]

      (24) Barbe, C. J.; Arendse, F.; Comte, P.; Jirousek, M.; Lenzmann, F.; Shklover, V.; Grätzel, M. J. Am. Ceram. Soc. 1997, 80, 3157.

    25. [25]

      (25) Nazeeruddin, M. K.; Kay, A.; Rodicio, I.; Humphry-Baker, R.; Mueller, E.; Liska, P.; Vlachopoulos, N.; Grätzel, M. J. Am. Chem. Soc 1993, 115, 6382.  

    26. [26]

      (26) Cembrero, J.; Elmanouni, A.; Hartiti, B.; Mollar, M.; Marí, B. Thin Solid Films 2004, 45, 198.

    27. [27]

      (27) Graaf, H.; Maedler, C.; Kehr, M.; Oekermann, T. J. Phys. Chem. C 2009, 113, 6910.  

    28. [28]

      (28) Boeckler, C.; Oekermann, T.; Soruban, M.; Ichinose, K.; Yoshida, T. Phys. Stat. Sol. 2005, 205, 2388.

    29. [29]

      (29) Gerischer, H.; Sorg, N.; Electrochim. Acta 1992, 37, 827.  

    30. [30]

      (30) Choi, J. H.; Jang, E. S.;Won, J. H.; Chung, J. H.; Jang, D. J.; Kim, Y.W. Adv. Mater. 2003, 15, 1911.  

    31. [31]

      (31) Yoshida, T.; Pauporte, T.; Lincot, D.; Oekermann, T.; Minoura, H. J. Electrochem. Soc. 2003, 150, C608.

    32. [32]

      (32) Yoshida, T.; Tochimoto, M.; Schlettwein, D.;Wohrle, D.; Sugiura, T.; Minoura, H. Chem. Mater. 1999, 11, 2657.  

    33. [33]

      (33) Gan, X.; Li, X.; Gao, X.; He, X.; Zhuge, F. Mater. Chem. Phys. 2009, 114, 920.  

    34. [34]

      (34) Yoshida, T.; Zhang, J.; Komatsu, D.; Sawatani, S.; Minoura, H.; Pauporté, T.; Lincot, D.; Oekermann, T.; Schlettwein, D.; Tada, H.;Wöhrle, D.; Funabiki, K.; Matsui, M.; Miura, H.; Yanagi, H. Adv. Funct. Mater, 2009, 1, 17.

  • 加载中
    1. [1]

      Zihao WangJing XueZhicui SongJianxiong XingAijun ZhouJianmin MaJingze Li . Li-Zn alloy patch for defect-free polymer interface film enables excellent protection effect towards stable Li metal anode. Chinese Chemical Letters, 2024, 35(10): 109489-. doi: 10.1016/j.cclet.2024.109489

    2. [2]

      Junhan LuoQi QingLiqin HuangZhe WangShuang LiuJing ChenYuexiang Lu . Non-contact gaseous microplasma electrode as anode for electrodeposition of metal and metal alloy in molten salt. Chinese Chemical Letters, 2024, 35(4): 108483-. doi: 10.1016/j.cclet.2023.108483

    3. [3]

      Mohamed Saber LassouedFaizan AhmadYanzhen Zheng . Film thickness effect on 2D lead-free hybrid double perovskite properties: Band gap, photocurrent and stability. Chinese Chemical Letters, 2025, 36(4): 110477-. doi: 10.1016/j.cclet.2024.110477

    4. [4]

      Kexin YuanYulei LiuHaoran FengYi LiuJun ChengBeiyang LuoQinglian WuXinyu ZhangYing WangXian BaoWanqian GuoJun Ma . Unlocking the potential of thin-film composite reverse osmosis membrane performance: Insights from mass transfer modeling. Chinese Chemical Letters, 2024, 35(5): 109022-. doi: 10.1016/j.cclet.2023.109022

    5. [5]

      Ting WANGPeipei ZHANGShuqin LIURuihong WANGJianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134

    6. [6]

      Wenhao ChenMuxuan WuHan ChenLue MoYirong Zhu . Cu2Se@C thin film with three-dimensional braided structure as a cathode material for enhanced Cu2+ storage. Chinese Chemical Letters, 2024, 35(5): 108698-. doi: 10.1016/j.cclet.2023.108698

    7. [7]

      Hao WANGKun TANGJiangyang SHAOKezhi WANGYuwu ZHONG . Electro-copolymerized film of ruthenium catalyst and redox mediator for electrocatalytic water oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2193-2202. doi: 10.11862/CJIC.20240176

    8. [8]

      Xiang WangQingping SongZixiang HeGong ZhangTengfei MiaoXiaoxiao ChengWei Zhang . Constructing diverse switchable circularly polarized luminescence via a single azobenzene polymer film. Chinese Chemical Letters, 2025, 36(1): 110047-. doi: 10.1016/j.cclet.2024.110047

    9. [9]

      Lingfeng ZhengChengyuan LvWenlin CaiQingze PanZuokai WangWenkai LiuJiangli FanXiaojun Peng . A single-component LED excited enone photoinitiator for colorless and transparent antibacterial film preparation. Chinese Chemical Letters, 2025, 36(4): 109922-. doi: 10.1016/j.cclet.2024.109922

    10. [10]

      Hao ZhangHaonan QuEhsan Bahojb NoruziHaibing LiFeng Liang . A nanocomposite film with layer-by-layer self-assembled gold nanospheres driven by cucurbit[7]uril for the selective transport of L-tryptophan and lysozyme. Chinese Chemical Letters, 2025, 36(1): 109731-. doi: 10.1016/j.cclet.2024.109731

    11. [11]

      Xin LiLing ZhangYunyan FanShaojing LinYong LinYongsheng YingMeijiao HuHaiying GaoXianri XuZhongbiao XiaXinchuan LinJunjie LuXiang Han . Carbon interconnected microsized Si film toward high energy room temperature solid-state lithium-ion batteries. Chinese Chemical Letters, 2025, 36(2): 109776-. doi: 10.1016/j.cclet.2024.109776

    12. [12]

      Yun WeiLei ZhouWenbin HuLiming YangGuang YangChaoqiang WangHui ShiFei HanYufa FengXuan DingPenghui ShaoXubiao Luo . Recovery of cathode copper and ternary precursors from CuS slag derived by waste lithium-ion batteries: Process analysis and evaluation. Chinese Chemical Letters, 2024, 35(7): 109172-. doi: 10.1016/j.cclet.2023.109172

    13. [13]

      Ting ShiZiyang SongYaokang LvDazhang ZhuLing MiaoLihua GanMingxian Liu . Hierarchical porous carbon guided by constructing organic-inorganic interpenetrating polymer networks to facilitate performance of zinc hybrid supercapacitors. Chinese Chemical Letters, 2025, 36(1): 109559-. doi: 10.1016/j.cclet.2024.109559

    14. [14]

      Min LUOXiaonan WANGYaqin ZHANGTian PANGFuzhi LIPu SHI . Porous spherical MnCo2S4 as high-performance electrode material for hybrid supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 413-424. doi: 10.11862/CJIC.20240205

    15. [15]

      Yang LIULijun WANGHongyu WANGZhidong CHENLin SUN . Surface and interface modification of porous silicon anodes in lithium-ion batteries by the introduction of heterogeneous atoms and hybrid encapsulation. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 773-785. doi: 10.11862/CJIC.20250015

    16. [16]

      Ning DINGSiyu WANGShihua YUPengcheng XUDandan HANDexin SHIChao ZHANG . Crystalline and amorphous metal sulfide composite electrode materials with long cycle life: Preparation and performance of hybrid capacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1784-1794. doi: 10.11862/CJIC.20240146

    17. [17]

      Haiyang Gu Xiang Xu . Multicolor hybrid metal halides and anti-counterfeiting. Chinese Journal of Structural Chemistry, 2024, 43(9): 100352-100352. doi: 10.1016/j.cjsc.2024.100352

    18. [18]

      Ning LISiyu DUXueyi WANGHui YANGTao ZHOUZhimin GUANPeng FEIHongfang MAShang JIANG . Preparation and efficient catalysis for olefins epoxidation of a polyoxovanadate-based hybrid. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 799-808. doi: 10.11862/CJIC.20230372

    19. [19]

      Yan Cheng Hai-Quan Yao Ya-Di Zhang Chao Shi Heng-Yun Ye Na Wang . Nitrate-bridged hybrid organic-inorganic perovskites. Chinese Journal of Structural Chemistry, 2024, 43(9): 100358-100358. doi: 10.1016/j.cjsc.2024.100358

    20. [20]

      Chunhui ZhangJie WangJieyang ZhanRunmin YangGuanggang GaoJiayuan ZhangLinlin FanMengqi WangHong Liu . Highly sensitive hydrazine detection through a novel Raman scattering quenching mechanism enabled by a crystalline and noble metal–free polyoxometalate substrate. Chinese Chemical Letters, 2025, 36(3): 109719-. doi: 10.1016/j.cclet.2024.109719

Metrics
  • PDF Downloads(1064)
  • Abstract views(1775)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return