Citation:
MARÍ Bernabé, SINGH Krishan-Chander, MOLLAR Miguel, MOYA Mónica. Growth Mechanism and Morphology of ZnO/eosin-Y Hybrid Thin Films[J]. Acta Physico-Chimica Sinica,
;2012, 28(01): 251-256.
doi:
10.3866/PKU.WHXB201228251
-
Thin hybrid films of ZnO/eosin-Y were prepared by electrodeposition at -0.8 and -0.9 V in aqueous and non-aqueous baths at temperatures ranging from 40 to 90 °C with dye concentrations of 100 and 400 μmol·L-1. The films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray analysis (EDX), and absorption spectroscopy. The films prepared in a non-aqueous bath were non-porous and did not adsorb dye molecules on their surface. However, the films grown in aqueous media were porous in nature and adsorbed dye during the deposition of ZnO. Preferential growth of the film along the (002) face was observed, and the highest crystallinity was achieved when the film was deposited at 60 °C. The maximum absorption was achieved for the films grown at 60 to 70 °C, a deposition potential of -0.9 V, and a dye concentration of 100 μmol·L-1.
-
-
-
[1]
(1) Bube, R. H. Photoconductivity of Solids;Wiley: New York, 1960.
-
[2]
(2) Zink Oxide Bulk, Thin Films and Nanostructures; Jagadish, C., Pearton, S. Eds.; Elsevier: Amsterdam, 2006.
- [3]
-
[4]
(4) Look, D. C. Mater. Sci. Eng. 2001, 80, 383.
-
[5]
(5) Yamamoto, T.; Shiosaki, T.; Kawabata, A. J. Appl. Phys. 1980, 51, 3113.
-
[6]
(6) Aeugle, T. H.; Bialas, K.; Heneka, H.; Pleyer,W. Thin Solid Films 1991, 201, 293.
-
[7]
(7) Chatterjee, A. P. ; Mitra, P.; Mukhopadhyay, A. K. J. Mater. Sci. 1999, 34, 4225.
-
[8]
(8) Nicoll, F. H. Appl. Phys. Lett. 1996, 9, 13.
-
[9]
(9) Bagnall, D. M.; Chen, Y. F.; to, T.; Koyama, S.; Shen, M. Y.; Yao, T.; Zhu, Z. Appl. Phys. Lett. 1997, 70, 2230.
- [10]
-
[11]
(11) Nanto, H.; Minami, T.; Shooji, S.; Takata, S. J. Appl. Phys. 1984, 55, 1029.
-
[12]
(12) Natsume, Y.; Sakata, H.; Hirayama, T.; Yanagida, H. J. Appl. Phys. 1992, 72, 4203.
-
[13]
(13) Okamura, T.; Seki, Y.; Nagakary, S.; Okushi, H. Jpn. J. Appl. Phys. 1992, 31, 762.
-
[14]
(14) Aranovich, J.; Ortiz, A.; Bube, R. H. J. Vac. Sci. Technol. 1979, 16, 994.
- [15]
-
[16]
(16) Yoshida, T.; Terada, K.; Schlettwein, D.; Oekermann, T.; Sugiura, T.; Minoura, H. Advanced Materials 2000, 12, 1214.
-
[17]
(17) Lee,W. J.; Okada, H.;Wakahara, A.; Yoshida, A. Ceramics International 2006, 32, 495.
-
[18]
(18) Suri, P.; Mehra, R. M. Solar Energy Materials and Solar Cells 2007, 91, 518.
-
[19]
(19) Suri, P.; M. Panwar, M.; Mehra, R. M. Materials Science-Poland 2007, 25, 137.
-
[20]
(20) Wu, J.; Chen, G. R.; Yang, H. H.; Ku, C. H.; Lai, J. Y. Appl. Phys. Lett. 2007, 90, 213.
-
[21]
(21) Hara, K.; Horiguchi, T.; Kinoshita, T.; Sayama, K.; Sugihara, H.; Arakawa, H. Solar Energy Materials and Solar Cells 2000, 64, 115.
-
[22]
(22) Matsumura, M.; Matsudaira, S.; Tsubomura, H.; Takata, M.; Yanagida, H. Industrial & Engineering Chemistry Product Research and Development 1980, 19, 415.
- [23]
-
[24]
(24) Barbe, C. J.; Arendse, F.; Comte, P.; Jirousek, M.; Lenzmann, F.; Shklover, V.; Grätzel, M. J. Am. Ceram. Soc. 1997, 80, 3157.
-
[25]
(25) Nazeeruddin, M. K.; Kay, A.; Rodicio, I.; Humphry-Baker, R.; Mueller, E.; Liska, P.; Vlachopoulos, N.; Grätzel, M. J. Am. Chem. Soc 1993, 115, 6382.
-
[26]
(26) Cembrero, J.; Elmanouni, A.; Hartiti, B.; Mollar, M.; Marí, B. Thin Solid Films 2004, 45, 198.
-
[27]
(27) Graaf, H.; Maedler, C.; Kehr, M.; Oekermann, T. J. Phys. Chem. C 2009, 113, 6910.
-
[28]
(28) Boeckler, C.; Oekermann, T.; Soruban, M.; Ichinose, K.; Yoshida, T. Phys. Stat. Sol. 2005, 205, 2388.
-
[29]
(29) Gerischer, H.; Sorg, N.; Electrochim. Acta 1992, 37, 827.
-
[30]
(30) Choi, J. H.; Jang, E. S.;Won, J. H.; Chung, J. H.; Jang, D. J.; Kim, Y.W. Adv. Mater. 2003, 15, 1911.
-
[31]
(31) Yoshida, T.; Pauporte, T.; Lincot, D.; Oekermann, T.; Minoura, H. J. Electrochem. Soc. 2003, 150, C608.
-
[32]
(32) Yoshida, T.; Tochimoto, M.; Schlettwein, D.;Wohrle, D.; Sugiura, T.; Minoura, H. Chem. Mater. 1999, 11, 2657.
-
[33]
(33) Gan, X.; Li, X.; Gao, X.; He, X.; Zhuge, F. Mater. Chem. Phys. 2009, 114, 920.
-
[34]
(34) Yoshida, T.; Zhang, J.; Komatsu, D.; Sawatani, S.; Minoura, H.; Pauporté, T.; Lincot, D.; Oekermann, T.; Schlettwein, D.; Tada, H.;Wöhrle, D.; Funabiki, K.; Matsui, M.; Miura, H.; Yanagi, H. Adv. Funct. Mater, 2009, 1, 17.
-
[1]
-
-
-
[1]
Zihao Wang , Jing Xue , Zhicui Song , Jianxiong Xing , Aijun Zhou , Jianmin Ma , Jingze Li . Li-Zn alloy patch for defect-free polymer interface film enables excellent protection effect towards stable Li metal anode. Chinese Chemical Letters, 2024, 35(10): 109489-. doi: 10.1016/j.cclet.2024.109489
-
[2]
Junhan Luo , Qi Qing , Liqin Huang , Zhe Wang , Shuang Liu , Jing Chen , Yuexiang Lu . Non-contact gaseous microplasma electrode as anode for electrodeposition of metal and metal alloy in molten salt. Chinese Chemical Letters, 2024, 35(4): 108483-. doi: 10.1016/j.cclet.2023.108483
-
[3]
Mohamed Saber Lassoued , Faizan Ahmad , Yanzhen Zheng . Film thickness effect on 2D lead-free hybrid double perovskite properties: Band gap, photocurrent and stability. Chinese Chemical Letters, 2025, 36(4): 110477-. doi: 10.1016/j.cclet.2024.110477
-
[4]
Kexin Yuan , Yulei Liu , Haoran Feng , Yi Liu , Jun Cheng , Beiyang Luo , Qinglian Wu , Xinyu Zhang , Ying Wang , Xian Bao , Wanqian Guo , Jun Ma . Unlocking the potential of thin-film composite reverse osmosis membrane performance: Insights from mass transfer modeling. Chinese Chemical Letters, 2024, 35(5): 109022-. doi: 10.1016/j.cclet.2023.109022
-
[5]
Ting WANG , Peipei ZHANG , Shuqin LIU , Ruihong WANG , Jianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134
-
[6]
Wenhao Chen , Muxuan Wu , Han Chen , Lue Mo , Yirong Zhu . Cu2Se@C thin film with three-dimensional braided structure as a cathode material for enhanced Cu2+ storage. Chinese Chemical Letters, 2024, 35(5): 108698-. doi: 10.1016/j.cclet.2023.108698
-
[7]
Hao WANG , Kun TANG , Jiangyang SHAO , Kezhi WANG , Yuwu ZHONG . Electro-copolymerized film of ruthenium catalyst and redox mediator for electrocatalytic water oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2193-2202. doi: 10.11862/CJIC.20240176
-
[8]
Xiang Wang , Qingping Song , Zixiang He , Gong Zhang , Tengfei Miao , Xiaoxiao Cheng , Wei Zhang . Constructing diverse switchable circularly polarized luminescence via a single azobenzene polymer film. Chinese Chemical Letters, 2025, 36(1): 110047-. doi: 10.1016/j.cclet.2024.110047
-
[9]
Lingfeng Zheng , Chengyuan Lv , Wenlin Cai , Qingze Pan , Zuokai Wang , Wenkai Liu , Jiangli Fan , Xiaojun Peng . A single-component LED excited enone photoinitiator for colorless and transparent antibacterial film preparation. Chinese Chemical Letters, 2025, 36(4): 109922-. doi: 10.1016/j.cclet.2024.109922
-
[10]
Hao Zhang , Haonan Qu , Ehsan Bahojb Noruzi , Haibing Li , Feng Liang . A nanocomposite film with layer-by-layer self-assembled gold nanospheres driven by cucurbit[7]uril for the selective transport of L-tryptophan and lysozyme. Chinese Chemical Letters, 2025, 36(1): 109731-. doi: 10.1016/j.cclet.2024.109731
-
[11]
Xin Li , Ling Zhang , Yunyan Fan , Shaojing Lin , Yong Lin , Yongsheng Ying , Meijiao Hu , Haiying Gao , Xianri Xu , Zhongbiao Xia , Xinchuan Lin , Junjie Lu , Xiang Han . Carbon interconnected microsized Si film toward high energy room temperature solid-state lithium-ion batteries. Chinese Chemical Letters, 2025, 36(2): 109776-. doi: 10.1016/j.cclet.2024.109776
-
[12]
Yun Wei , Lei Zhou , Wenbin Hu , Liming Yang , Guang Yang , Chaoqiang Wang , Hui Shi , Fei Han , Yufa Feng , Xuan Ding , Penghui Shao , Xubiao Luo . Recovery of cathode copper and ternary precursors from CuS slag derived by waste lithium-ion batteries: Process analysis and evaluation. Chinese Chemical Letters, 2024, 35(7): 109172-. doi: 10.1016/j.cclet.2023.109172
-
[13]
Ting Shi , Ziyang Song , Yaokang Lv , Dazhang Zhu , Ling Miao , Lihua Gan , Mingxian Liu . Hierarchical porous carbon guided by constructing organic-inorganic interpenetrating polymer networks to facilitate performance of zinc hybrid supercapacitors. Chinese Chemical Letters, 2025, 36(1): 109559-. doi: 10.1016/j.cclet.2024.109559
-
[14]
Min LUO , Xiaonan WANG , Yaqin ZHANG , Tian PANG , Fuzhi LI , Pu SHI . Porous spherical MnCo2S4 as high-performance electrode material for hybrid supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 413-424. doi: 10.11862/CJIC.20240205
-
[15]
Yang LIU , Lijun WANG , Hongyu WANG , Zhidong CHEN , Lin SUN . Surface and interface modification of porous silicon anodes in lithium-ion batteries by the introduction of heterogeneous atoms and hybrid encapsulation. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 773-785. doi: 10.11862/CJIC.20250015
-
[16]
Ning DING , Siyu WANG , Shihua YU , Pengcheng XU , Dandan HAN , Dexin SHI , Chao ZHANG . Crystalline and amorphous metal sulfide composite electrode materials with long cycle life: Preparation and performance of hybrid capacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1784-1794. doi: 10.11862/CJIC.20240146
-
[17]
Haiyang Gu , Xiang Xu . Multicolor hybrid metal halides and anti-counterfeiting. Chinese Journal of Structural Chemistry, 2024, 43(9): 100352-100352. doi: 10.1016/j.cjsc.2024.100352
-
[18]
Ning LI , Siyu DU , Xueyi WANG , Hui YANG , Tao ZHOU , Zhimin GUAN , Peng FEI , Hongfang MA , Shang JIANG . Preparation and efficient catalysis for olefins epoxidation of a polyoxovanadate-based hybrid. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 799-808. doi: 10.11862/CJIC.20230372
-
[19]
Yan Cheng , Hai-Quan Yao , Ya-Di Zhang , Chao Shi , Heng-Yun Ye , Na Wang . Nitrate-bridged hybrid organic-inorganic perovskites. Chinese Journal of Structural Chemistry, 2024, 43(9): 100358-100358. doi: 10.1016/j.cjsc.2024.100358
-
[20]
Chunhui Zhang , Jie Wang , Jieyang Zhan , Runmin Yang , Guanggang Gao , Jiayuan Zhang , Linlin Fan , Mengqi Wang , Hong Liu . Highly sensitive hydrazine detection through a novel Raman scattering quenching mechanism enabled by a crystalline and noble metal–free polyoxometalate substrate. Chinese Chemical Letters, 2025, 36(3): 109719-. doi: 10.1016/j.cclet.2024.109719
-
[1]
Metrics
- PDF Downloads(1064)
- Abstract views(1775)
- HTML views(8)