Citation: ZHENG Li-Si, FENG Miao, ZHAN Hong-Bing. Synthesis of CdS Quantum Dots and Their Optical Limiting Effect[J]. Acta Physico-Chimica Sinica, ;2012, 28(01): 208-212. doi: 10.3866/PKU.WHXB201228208 shu

Synthesis of CdS Quantum Dots and Their Optical Limiting Effect

  • Received Date: 27 June 2011
    Available Online: 28 October 2011

    Fund Project: 福建省自然科学基金(2009J01241)资助项目 (2009J01241)

  • Four kinds of CdS quantum dots (Qds) with four different surface-capping organic groups were prepared by a colloidal chemical method. The linear and nonlinear optical properties of the materials were characterized using transmission electron microscopy (TEM), ultraviolet-visible (UV-Vis) absorption spectroscopy, photoluminescence (PL) spectroscopy, and Z-scan measurements. The results show that the particle size, the surface morphology, and the defect concentration are the main factors that determine the nonlinear optical properties.
  • 加载中
    1. [1]

      (1) Jia,W. L.; Douglas, E. P.; Guo, F. G.; Sun,W. F. Appl. Phys. Lett. 2004, 85, 6326.  

    2. [2]

      (2) Venkatram, N.; Rao, D. N.; Akundi, M. A. Opt. Express 2005,13, 867.  

    3. [3]

      (3) Auston, D. H.; Ballman, A. A.; Bhattacharya, P.; Bjorklund, G.J.; Bowden, C.; Boyd, R.W.; Brody, P. S.; Burnham, R.; Byer, R. L.; Carter, G.; Chemla, D.; Dagenais, M.; Dohler, G.; Efron,U.; Eimerl, D.; Feigelson, R. S.; Feinberg, J.; Feldman, B. J.;Garito, A. F.; Garmire, E. M.; Gibbs, H. M.; Glass, A. M.; ldberg, L. S.; Gunshor, R. L.; Gustafson, T. K.; Hellwarth, R.W.; Kaplan, A. E.; Kelley, P. L.; Leonberger, F. J.; Lytel, R. S.;Majerfeld, A.; Menyuk, N.; Meredith, G. R.; Neurgaonkar, R.R.; Peyghambarian, N. G.; Prasad, P.; Rakuljic, G.; Shen, Y. R.;Smith, P.W.; Stamatoff, J.; Stegeman, G.; Stillman, G.; Tang, C.L.; Temkin, H.; Thakur, M.; Valley, G. C.;Wolff, P. A.;Woods,C. Appl. Opt. 1987, 26, 213.  

    4. [4]

      (4) Murry, C. B.; Norris, D. J.; Bawendi M. G. J. Am. Chem. Soc.1993, 115, 8706.  

    5. [5]

      (5) Vossmeyer, T.; Katsikas, L.; Giersig, P. I. G.; Diesner, K.;Chemseddine, A.; Eychmuller, A.;Weller, H. J. Phys. Chem.1994, 98, 7665.  

    6. [6]

      (6) Sun, Y.; Riggs, J. E. Int. Rev. Phys . Chem. 1999, 18, 43.  

    7. [7]

      (7) McConnell,W.; Novak, J.; Brousseau, L., III; Fuierer, R.;Tenent, R.; Feldheim, D. J. Phys. Chem. B 2000, 104, 8925.  

    8. [8]

      (8) Yin, H. Y.; Xu, Z. D.; Zheng, Y. F.;Wang, Q. S.; Chen,W. X.Acta Phys. -Chim. Sin. 2004, 20, 1308. [殷好勇, 徐铸德, 郑遗凡, 汪庆升, 陈卫祥. 物理化学学报, 2004, 20, 1308.]

    9. [9]

      (9) Zhang, B. Q.; Feng, Z. F.; Han, N. N.; Lin, L. L.; Zhou, J. H.;Lin, Z. H. Acta Phys. -Chim. Sin. 2010, 26, 2927. [张桥保, 冯增芳, 韩楠楠, 林玲玲, 周剑章, 林仲华. 物理化学学报, 2010,26, 2927.]

    10. [10]

      (10) Wen, L. Q.; Lü, J. Q.; Lü, H. Q.; Zhou, X.W.; Sun, T. Q. Acta Phys. -Chim. Sin. 2008, 24, 725. [文立群, 吕鉴泉, 吕汉清,周兴旺, 孙婷荃. 物理化学学报, 2008, 24, 725.]

    11. [11]

      (11) Qi, L. M.; Colfen, H.; Antonietti, M. Nano. Lett. 2001, 1, 61.  

    12. [12]

      (12) Hache, F.; Richard, D.; Flytzanis, C. J. Opt. Soc. Am. B 1986, 3,1647.  

    13. [13]

      (13) Sun, Y. P.; Riggs, J. E.; Rollins, H.W.; Radhakishan, G. J. Phys. Chem. B 1999, 103, 77.  

    14. [14]

      (14) Sheik-Bahae, M.; Said, A. A.;Wei, T. H.; Hagan, D. J.; VanStryland, E.W. IEEE J. Quantum Electron. 1990, 26, 760.  

    15. [15]

      (15) Zheng, C.; Du, Y. H.; Feng, M.; Zhan, H. B. Appl. Phys. Lett.2008, 93, 143108-1-3.

    16. [16]

      (16) Colvin, V. L.; ldstein, A. N.; Alivisatos, A. P. J. Am. Chem. Soc. 1992, 114, 5221.  

    17. [17]

      (17) Li, J. B.;Wang, L.W. Phys. Rev. B 2005, 72, 125325-1-15.

    18. [18]

      (18) Brus, L. J Phys. Chem. 1986, 90, 2555.  

    19. [19]

      (19) Ci, Y. X.; Jia, X. Chin. J. Anal. Chem. 1986, 14, 616. [慈云祥,贾欣. 分析化学, 1986, 14, 616.]

    20. [20]

      (20) Coter, D.; Burt, M. G.; Manning, R. J. Phys. Rev. Lett. 1992, 68,1200.  

    21. [21]

      (21) Kang, K. I.; Mcginnis, B. P. Phys. Rev. B 1992, 45, 3465.  

  • 加载中
    1. [1]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    2. [2]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    3. [3]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    4. [4]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    5. [5]

      Peng GENGGuangcan XIANGWen ZHANGHaichuang LANShuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155

    6. [6]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    7. [7]

      Kun Li Na Gao Shuangyan Huan Yuzhi Wang . Design of Ideological and Political Education for the Experiment of Detecting Cadmium with Anodic Stripping Voltammetry. University Chemistry, 2024, 39(2): 155-161. doi: 10.3866/PKU.DXHX202307068

    8. [8]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

    9. [9]

      Xin Lv Hongxing Zhang Kaibo Duan Wenhui Dai Zhihui Wen Wei Guo Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, 2024, 39(5): 70-79. doi: 10.3866/PKU.DXHX202309090

    10. [10]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    11. [11]

      Xingmin ChenYunyun WuYao TangPeishen LiShuai GaoQiang WangWen LiuSihui Zhan . Construction of Z-scheme Cu-CeO2/BiOBr heterojunction for enhanced photocatalytic degradation of sulfathiazole. Chinese Chemical Letters, 2024, 35(7): 109245-. doi: 10.1016/j.cclet.2023.109245

    12. [12]

      Jin Jia Shangda Jiang . Is the z Axis Special in Atomic Structure?. University Chemistry, 2024, 39(6): 400-404. doi: 10.12461/PKU.DXHX202403091

    13. [13]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    14. [14]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    15. [15]

      Xiaoming Fu Haibo Huang Guogang Tang Jingmin Zhang Junyue Sheng Hua Tang . Recent advances in g-C3N4-based direct Z-scheme photocatalysts for environmental and energy applications. Chinese Journal of Structural Chemistry, 2024, 43(2): 100214-100214. doi: 10.1016/j.cjsc.2024.100214

    16. [16]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    17. [17]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    18. [18]

      Honglian Liang Xiaozhe Kuang Fuping Wang Yu Chen . Exploration and Practice of Integrating Ideological and Political Education into Physical Chemistry: a Case on Surface Tension and Gibbs Free Energy. University Chemistry, 2024, 39(10): 433-440. doi: 10.12461/PKU.DXHX202405073

    19. [19]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    20. [20]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

Metrics
  • PDF Downloads(1136)
  • Abstract views(2493)
  • HTML views(24)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return