Citation: LIU Zhen, LIU u-Sheng, YU Jian-Guo. Effect of Primary Alkylamine Adsorption on Muscovite Hydrophobicity[J]. Acta Physico-Chimica Sinica, ;2012, 28(01): 201-207. doi: 10.3866/PKU.WHXB201228201 shu

Effect of Primary Alkylamine Adsorption on Muscovite Hydrophobicity

  • Received Date: 18 July 2011
    Available Online: 31 October 2011

    Fund Project: 国家自然科学基金(51164009)资助项目 (51164009)

  • The adsorption of surfactants on mineral surface has a great influence on the solid hydrophobicity and flotation behavior. The relationship between the hydrocarbon tail length of the primary alkylamines and muscovite hydrophobicity was investigated by contact angle measurement, atomic force microscopy (AFM), density functional theory (DFT), and molecular dynamics (MD) simulation. By comparing the oxygen density and the hydrogen bonds number profile, we observed that the formed hydrogen bonds for each water molecule on the interface between hydrocarbon tails and the water phase were fewer than that in the bulk. Additionally, the muscovite that absorbed alkylamines transformed from a hydrophilic surface to hydrophobic one. We also found that the octadecylamine (ODA)-absorbed muscovite surface was more hydrophobic than the dodecylamine (DDA)-absorbed surface while they were both in a monolayer state. Furthermore, because octadecylamine has a much lower hemi-micelle concentration (HMC) than dodecylamine, it forms multilayer more easily, meaning that the primary alkylamine with longer hydrocarbon tail is a better choice for the hydrophobicity enhancement of muscovite surface. The experimental results are in od agreement with theoretical calculations.
  • 加载中
    1. [1]

      (1) Patrick, H. N.;Warr, G. G.; Manne, S.; Aksay, I. A. Langmuir 1999, 15, 1685.  

    2. [2]

      (2) Nagarajan, R. Langmuir 2001, 18, 31.

    3. [3]

      (3) Fujii, M.; Li, B. Y.; Fukada, K.; Kato, T.; Seimiya, T. Langmuir 2001, 17, 1138.  

    4. [4]

      (4) Patil, K. G.; Santhanam, V.; Biswas, S. K.; Ayappa, K. G. J. Phys. Chem. C 2010, 114, 3549.  

    5. [5]

      (5) Vidyadhar, A.; Rao, K. H.; Chernyshova, I. V. Colloid Surf. A-Physicochem. Eng. Asp. 2003, 214, 127.  

    6. [6]

      (6) Wang, X. M.; Liu, J.; Du, H.; Miller, J. D. Langmuir 2010, 26, 3407.  

    7. [7]

      (7) Du, H.; Miller, J. D. Int. J. Miner. Process. 2007, 84, 172.  

    8. [8]

      (8) Zehl, T.;Wahab, A.; Schiller, P.; Mogel, H. J. Langmuir 2009, 25, 2090.  

    9. [9]

      (9) Zhang, R.; Liu, C.; Somasundaran, P. J. Colloid Interface Sci. 2007, 310, 377.  

    10. [10]

      (10) Liu, X. Y.; Li, C.; Tian,W. Y.; Chen, T.;Wang, L. H.; Zheng, Z.; Zhu, J. B.; Sun, M.; Liu, C. L. Acta Phys. -Chim. Sin. 2011, 27, 59. [刘晓宇, 黎春, 田文宇, 陈涛, 王路化, 郑仲, 朱建波, 孙茂, 刘春立. 物理化学学报, 2011, 27, 59. ]

    11. [11]

      (11) Song, Q. S.; Guo, X. L.; Yuan, S. L.; Liu, C. B. Acta Phys. -Chim. Sin. 2009, 25, 1053. [宋其圣, 郭新利, 苑世领, 刘成卜. 物理化学学报, 2009, 25, 1053.]

    12. [12]

      (12) Nishimura, S.; Scales, P. J.; Biggs, S.; Healy, T.W. Langmuir 2000, 16, 690.  

    13. [13]

      (13) Israelachvili, J. N.; Mitchell, D. J.; Ninham, B.W. J. Chem. Soc. Faraday Trans. 2 1976, 72, 1525.  

    14. [14]

      (14) Pugh, R. J.; Rutland, M.W.; Manev, E.; Claesson, P. M. Int. J. Miner. Process. 1996, 46, 245.  

    15. [15]

      (15) Zhang, R.; Somasundaran, P. Adv. Colloid Interface Sci. 2006, 123, 213.  

    16. [16]

      (16) Jiang, H.; Hu, Y. H.; Tan,W. Q.;Wang, Y. H.;Wang, D. Z. Chin. J. Nonferrous Met. 2001, 11, 688. [蒋昊, 胡岳华, 覃文庆, 王毓华, 王淀佐. 中国有色金属学报, 2001, 11, 688.]

    17. [17]

      (17) Kong, Y. X.; Di, Y. Y.; Zhang, Y. Q.; Yang,W.W.; Tan, Z. C. Thermochimi Acta 2009, 495, 33.  

    18. [18]

      (18) Heinz, H.; Koerner, H.; Anderson, K. L.; Vaia, R. A.; Farmer, B. L. Chem. Mat. 2005, 17, 5658.  

    19. [19]

      (19) Heinz, H.; Vaia, R. A.; Farmer, B. L.; Naik, R. R. J. Phys. Chem. C 2008, 112, 17281.  

    20. [20]

      (20) Heinz, H.; Vaia, R. A.; Farmer, B. L. J. Chem. Phys. 2006, 124, 224713.  

    21. [21]

      (21) Loewenstein,W. Am. Miner. 1954, 39, 92.

    22. [22]

      (22) Kuwahara, Y. Phys. Chem. Miner. 1999, 26, 198.  

    23. [23]

      (23) Bellaiche, L.; Vanderbilt, D. Phys. Rev. B 2000, 61, 7877.  

    24. [24]

      (24) Winkler, B.; Pickard, C.; Milman, V. Chem. Phys. Lett. 2002, 362, 266.  

    25. [25]

      (25) Berendsen, H. J. C.; Grigera, J. R.; Straatsma, T. P. J. Phys. Chem. 1987, 91, 6269.  

    26. [26]

      (26) Fuerstenau, D. J. Phys. Chem. 1956, 60, 981.  

    27. [27]

      (27) Fan, A.; Somasundaran, P.; Turro, N. J. Langmuir 1997, 13, 506.  

    28. [28]

      (28) Heinz, H.; Suter, U.W. J. Phys. Chem. B 2004, 108, 18341.  

    29. [29]

      (29) Trudeau, T. G.; Jena, K. C.; Hore, D. K. J. Phys. Chem. C 2009, 113, 20002.  

  • 加载中
    1. [1]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    2. [2]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    3. [3]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    4. [4]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    5. [5]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    6. [6]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    7. [7]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    8. [8]

      Qianqian Zhong Yucui Hao Guotao Yu Lijuan Zhao Jingfu Wang Jian Liu Xiaohua Ren . Comprehensive Experimental Design for the Preparation of the Magnetic Adsorbent Based on Enteromorpha Prolifera and Its Utilization in the Purification of Heavy Metal Ions Wastewater. University Chemistry, 2024, 39(8): 184-190. doi: 10.3866/PKU.DXHX202312013

    9. [9]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    10. [10]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    11. [11]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    12. [12]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    13. [13]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    14. [14]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    15. [15]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    16. [16]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    17. [17]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    18. [18]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    19. [19]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    20. [20]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

Metrics
  • PDF Downloads(1062)
  • Abstract views(2937)
  • HTML views(21)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return