Citation: LU Tian, CHEN Fei-Wu. Comparison of Computational Methods for Atomic Charges[J]. Acta Physico-Chimica Sinica, ;2012, 28(01): 1-18. doi: 10.3866/PKU.WHXB2012281 shu

Comparison of Computational Methods for Atomic Charges

  • Received Date: 13 September 2011
    Available Online: 31 October 2011

    Fund Project: 国家自然科学基金(20773011)资助项目 (20773011)

  • Atomic charge is one of the simplest and the most intuitive description of charge distribution in chemical systems. It has great significance in theory and in practical applications. In this article we introduce the basic principles and special characteristics of twelve important computational methods for the determination of atomic charges and compare their pros and cons from various aspects by considering a large number of instances. These methods include Mulliken, atomic orbitals in molecules (AOIM), Hirshfeld, atomic dipole moment corrected Hirshfeld population (ADCH), natural population analysis (NPA), Merz-Kollmann (MK), atom in molecules (AIM), Merck molecular force field 94 (MMFF94), AM1-BCC, Gasteiger, charge model 2 (CM2), and charge equilibration (QEq). Finally some general suggestions on how to choose a proper method for practical applications are given.
  • 加载中
    1. [1]

      (1) Qian, B. H.; Ma,W. X.; Lu, L. D.; Yang, X. J.;Wang, X. Acta Phys. -Chim. Sin. 2010, 26, 610. [钱保华, 马卫兴, 陆路德, 杨绪杰, 汪信. 物理化学学报, 2010, 26, 610.]

    2. [2]

      (2) Zheng,W. R.; Xu, J. L.; Xiong, R. Acta Phys. -Chim. Sin. 2010, 26, 2535. [郑文锐, 徐菁利, 熊瑞. 物理化学学报, 2010, 26, 2535.]

    3. [3]

      (3) Shen, T.; Du, F. P.; Liu, T.; Yao, G.W.;Wu, Z.; Fang, M. M.; Xu, X. J.; Lu, H. Z. Acta Phys. -Chim. Sin. 2011, 27, 1831. [申涛, 杜凤沛, 刘婷, 姚广伟, 吴峥, 方萌萌, 徐筱杰, 路慧哲. 物理化学学报, 2011, 27, 1831.]

    4. [4]

      (4) Zhou, J. J.; Chen, H. M.; Xie, G. R.; Ren, T. R.; Xu, Z. H. Prog. Chem. 1998, 10, 55. [周家驹, 陈红明, 谢桂荣, 任天瑞, 许志宏. 化学进展, 1998, 10, 55.]

    5. [5]

      (5) Ji, G. D.; Zhao, Y. H.; Yuan, X. J. Northeast Normal Univ. (Natural Science Edition) 1998, 47. [籍国东, 赵元慧, 袁星. 东北师范大学学报(自然科学版), 1998, 47.]

    6. [6]

      (6) Ding, Y. F.; Zhang, Y.; Zhang, D. H.; Li, Z. P. Acta Phys. -Chim. Sin. 2010, 26, 1651. [丁元法, 张跃, 张大海, 李仲平. 物理化学学报, 2010, 26, 1651.]

    7. [7]

      (7) Laio, A.; VandeVondele, J.; Rothlisberger, U. J. Phys. Chem. B 2002, 106, 7300.  

    8. [8]

      (8) Pipek, J.; Mezey, P. G. J. Chem. Phys. 1989, 90, 4916.  

    9. [9]

      (9) Elstner, M.; Porezag, D.; Jungnickel, G.; Elsner, J.; Haugk, M.; Frauenheim, T.; Suhai, S.; Seifert, G. Phys. Rev. B 1998, 58, 7260.  

    10. [10]

      (10) Giesen, D. J.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. 1995, 99, 7137.  

    11. [11]

      (11) Giesen, D. J.; Hawkins, G. D.; Liotard, D. A.; Cramer, C. J.; Truhlar, D. G. Theor. Chem. Acc. 1997, 98, 85.  

    12. [12]

      (12) Li, J. B.; Hawkins, G. D.; Cramer, C. J.; Truhlar, D. G. Chem. Phys. Lett. 1998, 288, 293.  

    13. [13]

      (13) Thompson, J. D.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. A 2004, 108, 6532.  

    14. [14]

      (14) Meister, J.; Schwarz,W. H. E. J. Phys. Chem. 1994, 98, 8245.  

    15. [15]

      (15) Cramer, C. J. Essentials of Computational Chemistry, 2nd ed.; JohnWiley & Sons:West Sussex, 2004; pp 309-324.

    16. [16]

      (16) Jensen, F. Introduction to Computational Chemistry, 2nd ed.; JohnWiley & Sons:West Sussex, 2007; pp 293-304.

    17. [17]

      (17) Young, D. C. Computational Chemistry; JohnWiley & Sons: New York, 2001; pp 99-105.

    18. [18]

      (18) Cioslowski, J. ElectronicWavefunction Analysis. In Encyclopedia of Computational Chemistry; Schleyer, P. v. R. Ed.; JohnWiley & Sons:West Sussex, 1998; Vol. 2, pp 892-905.

    19. [19]

      (19) Mulliken, R. S. J. Chem. Phys. 1955, 23, 1841.  

    20. [20]

      (20) Mulliken, R. S. J. Chem. Phys. 1955, 23, 1833.  

    21. [21]

      (21) Mulliken, R. S. J. Chem. Phys. 1955, 23, 2338.  

    22. [22]

      (22) Bachrach, S. M. Population Analysis and Electron Densities from Quantum Mechanics. In Reviews in Computational Chemistry; Lipkowitz, K. B., Boyd, D. B. Eds.; VCH Publishers: New York, 1994; Vol. 5, pp 171-227.

    23. [23]

      (23) Clark, A. E.; Sonnenberg, J. L.; Hay, P. J.; Martin, R. L. J. Chem. Phys. 2004, 121, 2563.  

    24. [24]

      (24) Martin, F.; Zipse, H. J. Comput. Chem. 2005, 26, 97.  

    25. [25]

      (25) Wiberg, K. B.; Rablen, P. R. J. Comput. Chem. 1993, 14, 1504.  

    26. [26]

      (26) Lu, H. G.; Dai, D. D.; Yang, P.; Li, L. M. Phys. Chem. Chem. Phys. 2006, 8, 340.

    27. [27]

      (27) Hirshfeld, F. L. Theor. Chem. Acc. 1977, 44, 129.  

    28. [28]

      (28) Lu, T.; Chen, F.W. J. Theor. Comput. Chem. Accepted.

    29. [29]

      (29) Reed, A. E.;Weinstock, R. B.;Weinhold, F. J. Chem. Phys. 1985, 83, 735.  

    30. [30]

      (30) Besler, B. H.; Merz, K. M., Jr.; Kollman, P. A. J. Comput. Chem. 1990, 11, 431.  

    31. [31]

      (31) Bader, R. F.W.; Beddall, P. M. J. Chem. Phys. 1972, 56, 3320.  

    32. [32]

      (32) Halgren, T. A. J. Comput. Chem. 1996, 17, 520.  

    33. [33]

      (33) Halgren, T. A. J. Comput. Chem. 1996, 17, 616.  

    34. [34]

      (34) Jakalian, A.; Bush, B. L.; Jack, D. B.; Bayly, C. I. J. Comput. Chem. 2000, 21, 132.  

    35. [35]

      (35) Jakalian, A.; Jack, D. B.; Bayly, C. I. J. Comput. Chem. 2002, 23, 1623.  

    36. [36]

      (36) Gasteiger, J.; Marsili, M. Tetrahedron 1980, 36, 3219.  

    37. [37]

      (37) Li, J. B.; Zhu, T. H.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. A 1998, 102, 1820.  

    38. [38]

      (38) Rappe, A. K.; ddard,W. A. J. Phys. Chem. 1991, 95, 3358.  

    39. [39]

      (39) Cusachs, L. C.; Politzer, P. Chem. Phys. Lett. 1968, 1, 529.  

    40. [40]

      (40) Stout, E.W.; Politzer, P. Theor. Chem. Acc. 1968, 12, 379.  

    41. [41]

      (41) Doggett, G. J. Chem. Soc. A 1969, 229.

    42. [42]

      (42) Christoffersena, R. E.; Baker, K. A. Chem. Phys. Lett. 1971, 8, 4.  

    43. [43]

      (43) Bickelhaupt, F. M.; van Eikema Hommes, N. J. R.; Fonseca Guerra, C.; Baerends, E. J. Organometallics 1996, 15, 2923.  

    44. [44]

      (44) Weinhold, F. Natural Bond Orbital Methods. In Encyclopedia of Computational Chemistry; Schleyer, P. v. R. Ed.; JohnWiley & Sons:West Sussex, 1998; Vol. 2 pp 1792-1811.

    45. [45]

      (45) Glendening, E. D.; Badenhoop, J. K.; Reed, A. E.; Carpenter, J. E.; Bohmann, J. A.; Morales, C. M.;Weinhold, F. NBO, Version 5.0, 2001. http://www.chem.wisc.edu/-nbo5/.

    46. [46]

      (46) Liu,W.; Li, L. Theor. Chem. Acc. 1997, 95, 81.  

    47. [47]

      (47) Sanchez-Portal, D.; Artacho, E.; Soler, J. M. Solid State Commun. 1995, 95, 685.  

    48. [48]

      (48) Sanchez-Portal, D.; Artacho, E.; Soler, J. M. J. Phys.: Condens. Matter 1996, 8, 3859.  

    49. [49]

      (49) Bader, F.W. Atoms in Molecules: A Quantum Theory; Oxford University Press: New York, 1994.

    50. [50]

      (50) Nalewajski, R. F.; Parr, R. G. Proc. Natl. Acad. Sci. U. S. A. 2000, 97, 8879.  

    51. [51]

      (51) Davidson, E. R.; Chakravorty, S. Theor. Chem. Acc. 1992, 83, 319.  

    52. [52]

      (52) Chirlian, L. E.; Francl, M. M. J. Comput. Chem. 1987, 8, 894.  

    53. [53]

      (53) Breneman, C. M.;Wiberg, K. B. J. Comput. Chem. 1990, 11, 361.  

    54. [54]

      (54) Sigfridsson, E.; Ryde, U. J. Comput. Chem. 1998, 19, 377.  

    55. [55]

      (55) Bayly, C. I.; Cieplak, P.; Cornell,W.; Kollman, P. A. J. Phys. Chem. 1993, 97, 10269.  

    56. [56]

      (56) Dewar, M. J. S.; Zoebisch, E. G.; Healy, E. F.; Stewart, J. J. P. J. Am. Chem. Soc. 1985, 107, 3902.  

    57. [57]

      (57) Storer, J.W.; Giesen, D. J.; Cramer, C. J.; Truhlar, D. G. J. Comput. -Aided Mol. Des. 1995, 9, 87.  

    58. [58]

      (58) Li, J. B.;Williams, B.; Cramer, C. J.; Truhlar, D. G. J. Chem. Phys. 1999, 110, 724.  

    59. [59]

      (59) Thompson, J. D.; Cramer, C. J.; Truhlar, D. G. J. Comput. Chem. 2003, 24, 1291.  

    60. [60]

      (60) Winget, P.; Thompson, J. D.; Xidos, J. D.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. A 2002, 106, 10707.  

    61. [61]

      (61) Kalinowski, J. A.; Lesyng, B.; Thompson, J. D.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. A 2004, 108, 2545.  

    62. [62]

      (62) Olson, R. M.; Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. J. Chem. Theory Comput. 2007, 3, 2046.  

    63. [63]

      (63) Kelly, C. P.; Cramer, C. J.; Truhlar, D. G. J. Chem. Theory Comput. 2005, 1, 1133.  

    64. [64]

      (64) Mayer, I. Chem. Phys. Lett. 1983, 97, 270.  

    65. [65]

      (65) Sanderson, R. T. Science 1951, 114, 670.  

    66. [66]

      (66) Rappe, A. K.; Casewit, C. J.; Colwell, K. S.; ddard,W. A.; Skiff,W. M. J. Am. Chem. Soc. 1992, 114, 10024.  

    67. [67]

      (67) Mortier,W. J.; Ghosh, S. K.; Shankar, S. J. Am. Chem. Soc. 1986, 108, 4315.  

    68. [68]

      (68) Cioslowski, J. Phys. Rev. Lett. 1989, 62, 1469.  

    69. [69]

      (69) Cioslowski, J. J. Am. Chem. Soc. 1989, 111, 8333.  

    70. [70]

      (70) Szabo, A.; Ostlund, N. S. Modern Quantum Chemistry, 1st rev ed.; Dover Publications: New York, 1989.

    71. [71]

      (71) Hariharan, P. C.; Pople, J. A. Theor. Chem. Acc. 1973, 28, 213.  

    72. [72]

      (72) Hehre,W. J.; Ditchfield, R.; Pople, J. A. J. Chem. Phys. 1972, 56, 2257.  

    73. [73]

      (73) Frisch, M. J.; Pople, J. A.; Binkley, J. S. J. Chem. Phys. 1984, 80, 3265.  

    74. [74]

      (74) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al . Gaussian 03, Revison E.01; Gaussian Inc.:Wallingford, CT, 2004.

    75. [75]

      (75) Lu, T. Multiwfn, Version 2.1.2; 2011. http://Multiwfn.codeplex. com.

    76. [76]

      (76) Keith, T. A. AIMALL, Version 10.05.04, 2010.

    77. [77]

      (77) Lu, H. G. AOIM, Version 1.1, 2006; http://faculty.sxu.cn/luhg/ aoim.html.

    78. [78]

      (78) Avogadro: an Open-Source Molecular Builder and Visualization Tool, Version 1.0.3, 2011.

    79. [79]

      (79) Case, D. A.; Darden, T. A.; Cheatham, T. E. C. III., et al . AmberTools, Version 1.5; 2011.

    80. [80]

      (80) Schäfer, A.; Horn, H.; Ahlrichs, R. J. Chem. Phys. 1992, 97, 2571.  

    81. [81]

      (81) PETRA Manual. http://www2.ccc.uni-erlangen.de/software/ petra/manual (accessed Sep 12, 2011).

    82. [82]

      (82) Marsili, M.; Gasteiger, J. Croat. Chem. Acta 1980, 53, 601.

    83. [83]

      (83) The Open Babel Package, Version 2.3.0; 2010. http://openbabel. sourceforge.net.

    84. [84]

      (84) Sanner, M. F. J. Mol. Graph. Modal. 1999, 17, 57.

    85. [85]

      (85) Woods, R. J.; Khalil, M.; Pell,W.; Moffat, S. H.; Smith, V. H. J. Comput. Chem. 1990, 11, 297.  

    86. [86]

      (86) Hehre,W. J.; Stewart, R. F.; Pople, J. A. J. Chem. Phys. 1969, 51, 2657.  

    87. [87]

      (87) Binkley, J. S.; Pople, J. A.; Hehre,W. J. J. Am. Chem. Soc. 1980, 102, 939.  

    88. [88]

      (88) Krishnan, R.; Binkley, J. S.; Seeger, R.; Pople, J. A. J. Chern. Phys. 1980, 72, 650.  

    89. [89]

      (89) Dunning, J. T. H. J. Chem. Phys. 1989, 90, 1007.  

    90. [90]

      (90) Kendall, R. A.; Dunning, T. H.; Harrison, R. J. J. Chem. Phys. 1992, 96, 6796.  

    91. [91]

      (91) Becke, A. D. Phys. Rev. A 1988, 38, 3098.  

    92. [92]

      (92) Perdew, J. P. Phys. Rev. B 1986, 33, 8822.  

    93. [93]

      (93) Becke, A. D. J. Chem. Phys. 1993, 98, 1372.  

    94. [94]

      (94) Patel, S.; Brooks, C. L. Mol. Simul. 2006, 32, 231.  

    95. [95]

      (95) Stewart, J. J. P. Int. J. Quantum Chem. 1996, 58, 133.  

    96. [96]

      (96) Biegler-König, F.W. J. Comput. Chem. 2000, 21, 1040.  

    97. [97]

      (97) Biegler-König, F.W.; Bader, R. F.W.; Tang, T. H. J. Comput. Chem. 1982, 3, 317.  

    98. [98]

      (98) Sanville, E.; Kenny, S. D.; Smith, R.; Henkelman, G. J. Comput. Chem. 2007, 28, 899.  

    99. [99]

      (99) Maseras, F.; Morokuma, K. Chem. Phys. Lett. 1992, 195, 500.  

  • 加载中
    1. [1]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    2. [2]

      Qian Huang Zhaowei Li Jianing Zhao Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018

    3. [3]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    4. [4]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    5. [5]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    6. [6]

      Hongyi Zhang Zhihong Shi Zhijun Zhang . A New Strategy for “De-formulized” Calculation of Dynamic Buffer Capacity in Analytical Chemistry Education. University Chemistry, 2024, 39(3): 390-394. doi: 10.3866/PKU.DXHX202309030

    7. [7]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    8. [8]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    9. [9]

      Hua Hou Baoshan Wang . Course Ideology and Politics Education in Theoretical and Computational Chemistry. University Chemistry, 2024, 39(2): 307-313. doi: 10.3866/PKU.DXHX202309045

    10. [10]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    11. [11]

      Tingbo Wang Yao Luo Bingyan Hu Ruiyuan Liu Jing Miao Huizhe Lu . Quantitative Computational Study on the Claisen Rearrangement Reaction of Allyl Phenyl Ethers: An Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(11): 278-285. doi: 10.12461/PKU.DXHX202403082

    12. [12]

      Xiaomei Ning Liang Zhan Xiaosong Zhou Jin Luo Xunfu Zhou Cuifen Luo . Preparation and Electro-Oxidation Performance of PtBi Supported on Carbon Cloth: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 217-224. doi: 10.3866/PKU.DXHX202401085

    13. [13]

      Jia Zhou . Constructing Potential Energy Surface of Water Molecule by Quantum Chemistry and Machine Learning: Introduction to a Comprehensive Computational Chemistry Experiment. University Chemistry, 2024, 39(3): 351-358. doi: 10.3866/PKU.DXHX202309060

    14. [14]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    15. [15]

      Zhenli Sun Ning Wang Kexin Lin Qin Dai Yufei Zhou Dandan Cao Yanfeng Dang . Visual Analysis of Hotspots and Development Trends in Analytical Chemistry Education Reform. University Chemistry, 2024, 39(11): 57-64. doi: 10.12461/PKU.DXHX202403095

    16. [16]

      Zhening Lou Quanxing Mao Xiaogeng Feng Lei Zhang Xu Xu Yuyang Zhang Xueyan Liu Hongling Kang Dongyang Feng Yongku Li . Practice of Implementing Blended Teaching in Shared Analytical Chemistry Course. University Chemistry, 2024, 39(2): 263-269. doi: 10.3866/PKU.DXHX202308089

    17. [17]

      Yan Zhang Ping Wang Tiebo Xiao Futing Zi Yunlong Chen . Measures for Ideological and Political Construction in Analytical Chemistry Curriculum. University Chemistry, 2024, 39(4): 255-260. doi: 10.3866/PKU.DXHX202401017

    18. [18]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    19. [19]

      Liuchuang Zhao Wenbo Chen Leqian Hu . Discussion on Improvement of Teaching Contents about Common Evaluation Parameters in Analytical Chemistry. University Chemistry, 2024, 39(2): 379-391. doi: 10.3866/PKU.DXHX202308079

    20. [20]

      Guangming Yang Yunhui Long . Design and Implementation of Analytical Chemistry Curriculum Based on the Learning Community of Teachers and Students. University Chemistry, 2024, 39(3): 132-137. doi: 10.3866/PKU.DXHX202309089

Metrics
  • PDF Downloads(3141)
  • Abstract views(6754)
  • HTML views(365)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return