Citation: YANG Yong-Hong, LI Fen-Fen, YANG Cheng, ZHANG Wen-Yu, WU Jin-Hu. Grafting Morphologies of TEPA on SBA-15(P) and Its Effect on CO2 Adsorption Performance[J]. Acta Physico-Chimica Sinica, ;2012, 28(01): 195-200. doi: 10.3866/PKU.WHXB201228195
-
Various amine-functionalized CO2 adsorbents were prepared by incorporating tetraethylenepenthamine (TEPA) onto SBA-15(P) by controlling the impregnation method and its process. The materials were characterized using X-ray diffraction (XRD), N2-adsorption, elemental analysis, and Fourier transform infrared (FTIR) techniques. Their adsorptive capacities were determined by CO2-temperature programmed desorption (TPD). The results indicate that the dynamic impregnation process using a TEPA ethanol solution was successful in loading TEPA into the channels of SBA-15(P). Moreover, bonding formation between the highly dispersed TEPA and SBA-15(P) was facilitated to CO2 adsorption/desorption. Therefore, a binding mechanism is proposed. The -NH2 group of TEPA forms hydrogen bonds with -OH and C-O-C groups on SBA-15(P), which results in the better dispersion of TEPA. However, the dynamic impregnation process for the TEPA ethanol solution can effectively avoid the formation of hydrogen bonds between the intra- and inter-molecules resulting in the high adsorptive capacity of the amino groups in TEPA.
-
Keywords:
-
SBA-15(P)
, - TEPA,
- CO2,
- Dynamic impregnation,
- Bond formation,
- Adsorptive capacity
-
-
-
[1]
(1) Blauwhoff, P. M. M.; Versteeg, G. F.; Van Swaaij,W. P. M. Chemical Engineering Science 1984, 39, 207.
-
[2]
(2) Zheng, F.; Tran, D. N.; Busche, B. J.; Fryxell, G. E.; Addleman, R. S.; Zemanian, T. S.; Aardahl, C. L. Industrial & Engineering Chemistry Research 2005, 44, 3099.
-
[3]
(3) Chang, A. C. C.; Chuang, S. S. C.; Gray, M.; Soong, Y. Energy & Fuels 2003, 17, 468.
-
[4]
(4) Gray, M. L.; Soong, Y.; Champagne, K. J.; Baltrus, J.; Stevens, R.W.; Toochinda, P.; Chuang, S. S. C. Separation and Purification Technology 2004, 35, 31.
-
[5]
(5) Iyer, M. V.; Gupta, H.; Sakadjian, B. B.; Fan, L. S. Industrial & Engineering Chemistry Research 2004, 43, 3939.
-
[6]
(6) Reddy, E. P.; Smirniotis, P. G. The Journal of Physical Chemistry B 2004, 108, 7794.
-
[7]
(7) Bredesen, R.; Jordal, K.; Bolland, O. Chemical Engineering and Processing 2004, 43, 1129.
-
[8]
(8) Huang, H. Y.; Yang, R. T.; Chinn, D.; Munson, C. L. Industrial & Engineering Chemistry Research 2003, 42, 2427.
-
[9]
(9) Demontigny, D.; Tontiwachwuthikul, P.; Chakma, A. Journal of Membrane Science 2006, 277, 99.
-
[10]
(10) Xu, X. C.; Song, C. S.; Andresen, J. M.; Miller, B. G.; Scaroni, A.W. Energy & Fuels 2002, 16, 1463.
-
[11]
(11) Xu, X. C.; Song, C. S.; Andresen, J. M.; Miller, B. G.; Scaroni, A.W. Microporous and Mesoporous Materials 2003, 62, 29.
-
[12]
(12) Yoshitake, H.; Yokoi, T.; Tatsumi, T. Chemistry of Materials 2003, 15, 1713.
-
[13]
(13) Han, Y. J.; Stucky, G. D.; Butler, A. Journal of the American Chemical Society 1999, 121, 9897.
-
[14]
(14) Kubota, Y.; Nishizaki, Y.; Ikeya, H.; Saeki, M.; Hida, T.; Kawazu, S.; Yoshida, M.; Fujii, H.; Sugi, Y. Microporous and Mesoporous Materials 2004, 70, 135.
-
[15]
(15) Matsumoto, A.; Tsutsumi, K.; Schumacher, K.; Unger, K. K. Langmuir 2002, 18, 4014.
-
[16]
(16) Kimura, T.; Saeki, S.; Sugahara, Y.; Kuroda, K. Langmuir 1999, 15, 2794.
-
[17]
(17) Inagaki, S.; Guan, S.; Fukushima, Y.; Ohsuna, T.; Terasaki, O. Journal of the American Chemical Society 1999, 121, 9611.
-
[18]
(18) Feng, X.; Fryxell, G. E.;Wang, L. Q.; Kim, A. Y.; Liu, J.; Kemner, K. M. Science 1997, 276, 923.
-
[19]
(19) Choi, S.; Drese, J. H.; Jones, C.W. ChemSusChem 2009, 2, 796.
-
[20]
(20) Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G. H.; Chmelka, B. F.; Stucky, G. D. Science 1998, 279, 548.
-
[21]
(21) Yue, M. B.; Sun, L. B.; Cao, Y.;Wang, Z. J.;Wang, Y.; Yu, Q.; Zhu, J. H. Microporous and Mesoporous Materials 2008, 114, 74.
-
[22]
(22) Aronu, U. E.; Svendsen, H. F.; Hoff, K. A.; Juliussen, O. Solvent Selection for Carbon dioxide Absorption Energy Procedia 2009, 1, 1051. 9th International Conference on Greenhouse Gas Control Technologies,Washington DC, Nov. 16-20, 2008.
-
[23]
(23) da Silva, E. F.; Svendsen, H. F. International Journal of Greenhouse Gas Control 2007, 1, 151.
-
[24]
(24) Yoshitake, H.; Koiso, E.; Horie, H.; Yoshimura, H. Microporous and Mesoporous Materials 2005, 85, 183.
-
[25]
(25) Hiyoshi, N.; Yo , K.; Yashima, T. Microporous and Mesoporous Materials 2005, 84, 357.
-
[26]
(26) Yue, M. B.; Chun, Y.; Cao, Y.; Dong, X.; Zhu, J. H. Advanced Functional Materials 2006, 16, 1717.
-
[27]
(27) Knowles, G. P.; Graham, J. V.; Delaney, S.W.; Chaffee, A. L. Fuel Processing Technology 2005, 86, 1435.
-
[28]
(28) Wu, D. A. Novel Method to Prepare Silica Based Carbon Dioxide Capture Sorbent. Ph. D. Dissertation, The University of Akron, Akron, 2008.
-
[29]
(29) Stevens,W. J. J.; Mertens, M.; Mullens, S.; Thijs, I.; Van Tendeloo, G.; Cool, P.; Vansant, E. F. Microporous and Mesoporous Materials 2006, 93, 119.
-
[30]
(30) Wei, J.W.; Shi, J. J.; Pan, H.; Su, Q. F.; Zhu, J. B.; Shi, Y. Microporous and Mesoporous Materials 2009, 117, 596.
-
[31]
(31) Cheng, C. F.; Lin, Y. C.; Cheng, H. H.; Chen, Y. C. Chemical Physics Letters 2003, 382, 496.
-
[32]
(32) Ding, Z. J.; Chen, J. H.; Guo, Y.; ng, X. Z. Bulletn of the Chinese Ceramic Society 2009, 28, 704. [丁志杰, 陈君华, 郭雨, 公旭中. 硅酸盐通报, 2009, 28, 704.]
-
[33]
(33) Su, Z. H.; Chen, Q. Y.; Li, J.; Liu, S. J. Acta Phys. -Chim. Sin. 2007, 23, 1760. [苏赵辉, 陈启元, 李洁, 刘士军. 物理化学学报, 2007, 23, 1760.]
-
[34]
(34) Ryoo, R.; Ko, C. H.; Kruk, M.; Antochshuk, V.; Jaroniec, M. The Journal of Physical Chemistry B 2000, 104, 11465.
-
[35]
(35) Yue, M. B.; Zhu, J. H. Chinese Journal of Catalysis 2008, 29, 1051. [岳明波, 朱建华. 催化学报, 2008 , 29, 1051.]
-
[36]
(36) Welcome toWikipedia, the free encyclopedia. http://en.wikipedia.org/wiki/Hydrogen_ bond (accessed Sep 07, 2011).
-
[1]
-
-
[1]
Zixuan Zhu , Xianjin Shi , Yongfang Rao , Yu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954
-
[2]
Tianbo Jia , Lili Wang , Zhouhao Zhu , Baikang Zhu , Yingtang Zhou , Guoxing Zhu , Mingshan Zhu , Hengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692
-
[3]
Li Li , Fanpeng Chen , Bohang Zhao , Yifu Yu . Understanding of the structural evolution of catalysts and identification of active species during CO2 conversion. Chinese Chemical Letters, 2024, 35(4): 109240-. doi: 10.1016/j.cclet.2023.109240
-
[4]
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
-
[5]
Hongyi Zhang , Zhihong Shi , Zhijun Zhang . A New Strategy for “De-formulized” Calculation of Dynamic Buffer Capacity in Analytical Chemistry Education. University Chemistry, 2024, 39(3): 390-394. doi: 10.3866/PKU.DXHX202309030
-
[6]
Linhan Tian , Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056
-
[7]
Muhammad Humayun , Mohamed Bououdina , Abbas Khan , Sajjad Ali , Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193
-
[8]
Hong Dong , Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307
-
[9]
Ping Wang , Tianbao Zhang , Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328
-
[10]
Bin Dong , Ning Yu , Qiu-Yue Wang , Jing-Ke Ren , Xin-Yu Zhang , Zhi-Jie Zhang , Ruo-Yao Fan , Da-Peng Liu , Yong-Ming Chai . Double active sites promoting hydrogen evolution activity and stability of CoRuOH/Co2P by rapid hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109221-. doi: 10.1016/j.cclet.2023.109221
-
[11]
Miaomiao Li , Mengwei Yuan , Xingzi Zheng , Kunyu Han , Genban Sun , Fujun Li , Huifeng Li . Highly polar CoP/Co2P heterojunction composite as efficient cathode electrocatalyst for Li-air battery. Chinese Chemical Letters, 2024, 35(9): 109265-. doi: 10.1016/j.cclet.2023.109265
-
[12]
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
-
[13]
Shu-Ran Xu , Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173
-
[14]
Yufei Jia , Fei Li , Ke Fan . Surface reconstruction of Cu-based bimetallic catalysts for electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100255-100255. doi: 10.1016/j.cjsc.2024.100255
-
[15]
Ziruo Zhou , Wenyu Guo , Tingyu Yang , Dandan Zheng , Yuanxing Fang , Xiahui Lin , Yidong Hou , Guigang Zhang , Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245
-
[16]
Qin Cheng , Ming Huang , Qingqing Ye , Bangwei Deng , Fan Dong . Indium-based electrocatalysts for CO2 reduction to C1 products. Chinese Chemical Letters, 2024, 35(6): 109112-. doi: 10.1016/j.cclet.2023.109112
-
[17]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[18]
Tian-Yu Gao , Xiao-Yan Mo , Shu-Rong Zhang , Yuan-Xu Jiang , Shu-Ping Luo , Jian-Heng Ye , Da-Gang Yu . Visible-light photoredox-catalyzed carboxylation of aryl epoxides with CO2. Chinese Chemical Letters, 2024, 35(7): 109364-. doi: 10.1016/j.cclet.2023.109364
-
[19]
Xueyang Zhao , Bangwei Deng , Hongtao Xie , Yizhao Li , Qingqing Ye , Fan Dong . Recent process in developing advanced heterogeneous diatomic-site metal catalysts for electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(7): 109139-. doi: 10.1016/j.cclet.2023.109139
-
[20]
Jinglin CHENG , Xiaoming GUO , Tao MENG , Xu HU , Liang LI , Yanzhe WANG , Wenzhu HUANG . NiAlNd catalysts for CO2 methanation derived from the layered double hydroxide precursor. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1592-1602. doi: 10.11862/CJIC.20240152
-
[1]
Metrics
- PDF Downloads(1052)
- Abstract views(2597)
- HTML views(1)