Citation: YANG Yong-Hong, LI Fen-Fen, YANG Cheng, ZHANG Wen-Yu, WU Jin-Hu. Grafting Morphologies of TEPA on SBA-15(P) and Its Effect on CO2 Adsorption Performance[J]. Acta Physico-Chimica Sinica, ;2012, 28(01): 195-200. doi: 10.3866/PKU.WHXB201228195 shu

Grafting Morphologies of TEPA on SBA-15(P) and Its Effect on CO2 Adsorption Performance

  • Received Date: 8 August 2011
    Available Online: 27 October 2011

    Fund Project: 山东省自然科学基金(2009ZRB01250) (2009ZRB01250)青岛市科技发展计划(1263194353127)资助项目 (1263194353127)

  • Various amine-functionalized CO2 adsorbents were prepared by incorporating tetraethylenepenthamine (TEPA) onto SBA-15(P) by controlling the impregnation method and its process. The materials were characterized using X-ray diffraction (XRD), N2-adsorption, elemental analysis, and Fourier transform infrared (FTIR) techniques. Their adsorptive capacities were determined by CO2-temperature programmed desorption (TPD). The results indicate that the dynamic impregnation process using a TEPA ethanol solution was successful in loading TEPA into the channels of SBA-15(P). Moreover, bonding formation between the highly dispersed TEPA and SBA-15(P) was facilitated to CO2 adsorption/desorption. Therefore, a binding mechanism is proposed. The -NH2 group of TEPA forms hydrogen bonds with -OH and C-O-C groups on SBA-15(P), which results in the better dispersion of TEPA. However, the dynamic impregnation process for the TEPA ethanol solution can effectively avoid the formation of hydrogen bonds between the intra- and inter-molecules resulting in the high adsorptive capacity of the amino groups in TEPA.
  • 加载中
    1. [1]

      (1) Blauwhoff, P. M. M.; Versteeg, G. F.; Van Swaaij,W. P. M. Chemical Engineering Science 1984, 39, 207.  

    2. [2]

      (2) Zheng, F.; Tran, D. N.; Busche, B. J.; Fryxell, G. E.; Addleman, R. S.; Zemanian, T. S.; Aardahl, C. L. Industrial & Engineering Chemistry Research 2005, 44, 3099.  

    3. [3]

      (3) Chang, A. C. C.; Chuang, S. S. C.; Gray, M.; Soong, Y. Energy & Fuels 2003, 17, 468.  

    4. [4]

      (4) Gray, M. L.; Soong, Y.; Champagne, K. J.; Baltrus, J.; Stevens, R.W.; Toochinda, P.; Chuang, S. S. C. Separation and Purification Technology 2004, 35, 31.  

    5. [5]

      (5) Iyer, M. V.; Gupta, H.; Sakadjian, B. B.; Fan, L. S. Industrial & Engineering Chemistry Research 2004, 43, 3939.  

    6. [6]

      (6) Reddy, E. P.; Smirniotis, P. G. The Journal of Physical Chemistry B 2004, 108, 7794.  

    7. [7]

      (7) Bredesen, R.; Jordal, K.; Bolland, O. Chemical Engineering and Processing 2004, 43, 1129.  

    8. [8]

      (8) Huang, H. Y.; Yang, R. T.; Chinn, D.; Munson, C. L. Industrial & Engineering Chemistry Research 2003, 42, 2427.  

    9. [9]

      (9) Demontigny, D.; Tontiwachwuthikul, P.; Chakma, A. Journal of Membrane Science 2006, 277, 99.  

    10. [10]

      (10) Xu, X. C.; Song, C. S.; Andresen, J. M.; Miller, B. G.; Scaroni, A.W. Energy & Fuels 2002, 16, 1463.  

    11. [11]

      (11) Xu, X. C.; Song, C. S.; Andresen, J. M.; Miller, B. G.; Scaroni, A.W. Microporous and Mesoporous Materials 2003, 62, 29.  

    12. [12]

      (12) Yoshitake, H.; Yokoi, T.; Tatsumi, T. Chemistry of Materials 2003, 15, 1713.  

    13. [13]

      (13) Han, Y. J.; Stucky, G. D.; Butler, A. Journal of the American Chemical Society 1999, 121, 9897.  

    14. [14]

      (14) Kubota, Y.; Nishizaki, Y.; Ikeya, H.; Saeki, M.; Hida, T.; Kawazu, S.; Yoshida, M.; Fujii, H.; Sugi, Y. Microporous and Mesoporous Materials 2004, 70, 135.  

    15. [15]

      (15) Matsumoto, A.; Tsutsumi, K.; Schumacher, K.; Unger, K. K. Langmuir 2002, 18, 4014.  

    16. [16]

      (16) Kimura, T.; Saeki, S.; Sugahara, Y.; Kuroda, K. Langmuir 1999, 15, 2794.  

    17. [17]

      (17) Inagaki, S.; Guan, S.; Fukushima, Y.; Ohsuna, T.; Terasaki, O. Journal of the American Chemical Society 1999, 121, 9611.  

    18. [18]

      (18) Feng, X.; Fryxell, G. E.;Wang, L. Q.; Kim, A. Y.; Liu, J.; Kemner, K. M. Science 1997, 276, 923.  

    19. [19]

      (19) Choi, S.; Drese, J. H.; Jones, C.W. ChemSusChem 2009, 2, 796.  

    20. [20]

      (20) Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G. H.; Chmelka, B. F.; Stucky, G. D. Science 1998, 279, 548.  

    21. [21]

      (21) Yue, M. B.; Sun, L. B.; Cao, Y.;Wang, Z. J.;Wang, Y.; Yu, Q.; Zhu, J. H. Microporous and Mesoporous Materials 2008, 114, 74.  

    22. [22]

      (22) Aronu, U. E.; Svendsen, H. F.; Hoff, K. A.; Juliussen, O. Solvent Selection for Carbon dioxide Absorption Energy Procedia 2009, 1, 1051. 9th International Conference on Greenhouse Gas Control Technologies,Washington DC, Nov. 16-20, 2008.

    23. [23]

      (23) da Silva, E. F.; Svendsen, H. F. International Journal of Greenhouse Gas Control 2007, 1, 151.  

    24. [24]

      (24) Yoshitake, H.; Koiso, E.; Horie, H.; Yoshimura, H. Microporous and Mesoporous Materials 2005, 85, 183.  

    25. [25]

      (25) Hiyoshi, N.; Yo , K.; Yashima, T. Microporous and Mesoporous Materials 2005, 84, 357.  

    26. [26]

      (26) Yue, M. B.; Chun, Y.; Cao, Y.; Dong, X.; Zhu, J. H. Advanced Functional Materials 2006, 16, 1717.  

    27. [27]

      (27) Knowles, G. P.; Graham, J. V.; Delaney, S.W.; Chaffee, A. L. Fuel Processing Technology 2005, 86, 1435.  

    28. [28]

      (28) Wu, D. A. Novel Method to Prepare Silica Based Carbon Dioxide Capture Sorbent. Ph. D. Dissertation, The University of Akron, Akron, 2008.

    29. [29]

      (29) Stevens,W. J. J.; Mertens, M.; Mullens, S.; Thijs, I.; Van Tendeloo, G.; Cool, P.; Vansant, E. F. Microporous and Mesoporous Materials 2006, 93, 119.  

    30. [30]

      (30) Wei, J.W.; Shi, J. J.; Pan, H.; Su, Q. F.; Zhu, J. B.; Shi, Y. Microporous and Mesoporous Materials 2009, 117, 596.  

    31. [31]

      (31) Cheng, C. F.; Lin, Y. C.; Cheng, H. H.; Chen, Y. C. Chemical Physics Letters 2003, 382, 496.  

    32. [32]

      (32) Ding, Z. J.; Chen, J. H.; Guo, Y.; ng, X. Z. Bulletn of the Chinese Ceramic Society 2009, 28, 704. [丁志杰, 陈君华, 郭雨, 公旭中. 硅酸盐通报, 2009, 28, 704.]

    33. [33]

      (33) Su, Z. H.; Chen, Q. Y.; Li, J.; Liu, S. J. Acta Phys. -Chim. Sin. 2007, 23, 1760. [苏赵辉, 陈启元, 李洁, 刘士军. 物理化学学报, 2007, 23, 1760.]

    34. [34]

      (34) Ryoo, R.; Ko, C. H.; Kruk, M.; Antochshuk, V.; Jaroniec, M. The Journal of Physical Chemistry B 2000, 104, 11465.  

    35. [35]

      (35) Yue, M. B.; Zhu, J. H. Chinese Journal of Catalysis 2008, 29, 1051. [岳明波, 朱建华. 催化学报, 2008 , 29, 1051.]

    36. [36]

      (36) Welcome toWikipedia, the free encyclopedia. http://en.wikipedia.org/wiki/Hydrogen_ bond (accessed Sep 07, 2011).

  • 加载中
    1. [1]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    2. [2]

      Tianbo JiaLili WangZhouhao ZhuBaikang ZhuYingtang ZhouGuoxing ZhuMingshan ZhuHengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692

    3. [3]

      Li LiFanpeng ChenBohang ZhaoYifu Yu . Understanding of the structural evolution of catalysts and identification of active species during CO2 conversion. Chinese Chemical Letters, 2024, 35(4): 109240-. doi: 10.1016/j.cclet.2023.109240

    4. [4]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    5. [5]

      Hongyi Zhang Zhihong Shi Zhijun Zhang . A New Strategy for “De-formulized” Calculation of Dynamic Buffer Capacity in Analytical Chemistry Education. University Chemistry, 2024, 39(3): 390-394. doi: 10.3866/PKU.DXHX202309030

    6. [6]

      Linhan Tian Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056

    7. [7]

      Muhammad Humayun Mohamed Bououdina Abbas Khan Sajjad Ali Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193

    8. [8]

      Hong Dong Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307

    9. [9]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    10. [10]

      Bin DongNing YuQiu-Yue WangJing-Ke RenXin-Yu ZhangZhi-Jie ZhangRuo-Yao FanDa-Peng LiuYong-Ming Chai . Double active sites promoting hydrogen evolution activity and stability of CoRuOH/Co2P by rapid hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109221-. doi: 10.1016/j.cclet.2023.109221

    11. [11]

      Miaomiao LiMengwei YuanXingzi ZhengKunyu HanGenban SunFujun LiHuifeng Li . Highly polar CoP/Co2P heterojunction composite as efficient cathode electrocatalyst for Li-air battery. Chinese Chemical Letters, 2024, 35(9): 109265-. doi: 10.1016/j.cclet.2023.109265

    12. [12]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    13. [13]

      Shu-Ran Xu Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173

    14. [14]

      Yufei Jia Fei Li Ke Fan . Surface reconstruction of Cu-based bimetallic catalysts for electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100255-100255. doi: 10.1016/j.cjsc.2024.100255

    15. [15]

      Ziruo Zhou Wenyu Guo Tingyu Yang Dandan Zheng Yuanxing Fang Xiahui Lin Yidong Hou Guigang Zhang Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245

    16. [16]

      Qin ChengMing HuangQingqing YeBangwei DengFan Dong . Indium-based electrocatalysts for CO2 reduction to C1 products. Chinese Chemical Letters, 2024, 35(6): 109112-. doi: 10.1016/j.cclet.2023.109112

    17. [17]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    18. [18]

      Tian-Yu GaoXiao-Yan MoShu-Rong ZhangYuan-Xu JiangShu-Ping LuoJian-Heng YeDa-Gang Yu . Visible-light photoredox-catalyzed carboxylation of aryl epoxides with CO2. Chinese Chemical Letters, 2024, 35(7): 109364-. doi: 10.1016/j.cclet.2023.109364

    19. [19]

      Xueyang ZhaoBangwei DengHongtao XieYizhao LiQingqing YeFan Dong . Recent process in developing advanced heterogeneous diatomic-site metal catalysts for electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(7): 109139-. doi: 10.1016/j.cclet.2023.109139

    20. [20]

      Jinglin CHENGXiaoming GUOTao MENGXu HULiang LIYanzhe WANGWenzhu HUANG . NiAlNd catalysts for CO2 methanation derived from the layered double hydroxide precursor. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1592-1602. doi: 10.11862/CJIC.20240152

Metrics
  • PDF Downloads(1052)
  • Abstract views(2597)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return