Citation: TIAN Hui-Wen, LI Wei-Hua, WANG Da-Peng, HOU Bao-Rong. Adsorption Mechanism of Nicotinic Acid onto a Passive Iron Surface[J]. Acta Physico-Chimica Sinica, ;2012, 28(01): 137-145. doi: 10.3866/PKU.WHXB201228137 shu

Adsorption Mechanism of Nicotinic Acid onto a Passive Iron Surface

  • Received Date: 30 June 2011
    Available Online: 17 October 2011

    Fund Project: 国家自然科学基金(51179182) (51179182) 山东省青岛市市南区科技发展基金(P2010-1-ZH-005) (P2010-1-ZH-005) 山东省博士后基金(BS2009HZ002) (BS2009HZ002)香港王宽诚教育基金(20061231)资助项目 (20061231)

  • Cyclic voltammetry and in situ Raman spectroscopy were used to determine the adsorption mechanism of nicotinic acid onto passive iron film surface. Its ability to form a surface complex tends to stabilize the interstitial Fe in Fe states and results in the progressive development of an insoluble film. Furthermore, an analytical investigation using a rotating electrochemical quartz crystal microbalance (rEQCM) showed that the adsorption isotherms of nicotinic acid onto iron in the active and passive states followed Langmuir-Freundlich behavior from which the adsorption constant, standard free energy of adsorption, and heterogeneity could be calculated. The organic molecules attach to the film surface by chemisorption and the interstitial cations are fixed in the octahedral sites giving stable nanocrystals. These assumptions were confirmed by scanning electron microscopy (SEM) and attenuated total reflection transform infrared (ATR FTIR) spectroscopy.
  • 加载中
    1. [1]

      (1) Söylev, T. A.; Richardson, M. G. Constr. Build. Mater. 2008, 22, 609.  

    2. [2]

      (2) Jussain, R.; Ishida, T. Constr. Build. Mater. 2011, 25, 1305.  

    3. [3]

      (3) Chen,W.; Du, R.; Ye, C. Electrochim. Acta 2010, 55, 5677.  

    4. [4]

      (4) Wei, J.; Dong, J.; Ke,W. Constr. Build. Mater. 2011, 25, 1243.  

    5. [5]

      (5) Ann, K. J.; Jung, H. S.; Kim, H. S. Cem. Concr. Res. 2006, 36, 530.  

    6. [6]

      (6) Garcés, P.; Saura, P.; Méndez, A. Corrosion Sci. 2008, 50, 498.  

    7. [7]

      (7) Sanchez, M.; Alonso, M. Constr. Build. Mater. 2011, 25, 873.  

    8. [8]

      (8) Al-Mehthel, M.; Dulaijan, S. Construc. Build. Mater. 2009, 23, 1768.  

    9. [9]

      (9) Ormellese, M.; Lazzari, L.; idanich, S.; Fumagalli, G.; Brenna, A. Corrosion Sci. 2009, 51, 2959.  

    10. [10]

      (10) Jamil, H. E.; Shriri, A.; Boulif, R. Cem. Concr. Comp. 2005, 27, 671.  

    11. [11]

      (11) Jamil, H. E.; Shriri, A.; Boulif, R. Electrochim. Acta 2004, 49, 2753.  

    12. [12]

      (12) Ferreira, E. S.; Giacomelli, C.; Spinelli, A. Mat. Chem. Phys. 2004, 83, 129.  

    13. [13]

      (13) ncalves, R. S.; Mello, L. D. Corrosion Sci. 2001, 43, 457.  

    14. [14]

      (14) Akrout, H.; Bousselmi, L.; Dalard, F. J. Mater. Sci. 2004, 39, 7341.  

    15. [15]

      (15) Valek, L.; Martinez, S.; Brnardi?, I. Corrosion Sci. 2008, 50, 2705.  

    16. [16]

      (16) Martinez, S.; Valek, L.; Oslakovi?, I. S. J. Electrochem. Soc. 2007, 11, C671.

    17. [17]

      (17) Valek, L.; Martinez, S.; Serdar, M.; Oslakovi?, I. S. Chem. Biochem. Eng. Q. 2007, 21, 65.

    18. [18]

      (18) Soylev, T.; McNally, C. Cem. Concr. Res. 2007, 37, 972.  

    19. [19]

      (19) Soylev, T.; McNally, C. Cem. Concr. Res. 2007, 29, 357.  

    20. [20]

      (20) Trabanelli, G.; Monticelli, C.; Grassi, V. Cem. Concr. Res. 2005, 35, 1804.  

    21. [21]

      (21) Mechmeche, L. B.; Dhouibi, L.; Zucchi, F. Cem. Concr. Compos. 2008, 30,167.  

    22. [22]

      (22) Qu, Q.; Li, L.; Ding, Z. Corrosion Sci. 2009, 51, 2423.  

    23. [23]

      (23) Elsener, B. Corrosion Inhibitors for Steel in Concrete. In: International Congress of Advanced Materials, Their Processes and Applications, Munich, Germany, Aug 5-10, 2000.

    24. [24]

      (24) Ormellese, M.; Taffaini, G.; Ganazzoli, F. Corrosion 2009, 3, 22.

    25. [25]

      (25) Diamanti, M. V.; Ormellese, M.; Pedeferri, M. Cem. Concr. Res. 2008, 38, 1349.  

    26. [26]

      (26) Ju, H.; Li, Y. Corrosion Sci. 2007, 49, 4185.  

    27. [27]

      (27) Ju, H.; Kai, Z.; Li, Y. Corrosion Sci. 2008, 50, 865.  

    28. [28]

      (28) Taylor, H. Cement Chemistry, 2nd ed.; T. Telford Pub.: London, 1998; p 214.

    29. [29]

      (29) Marinkovi?, N. S.; Calvente, J. J.; Ková?ová, Z. J. Electrochem. Soc. 1996, 143, L171.

    30. [30]

      (30) Ahlberg, E.; Friel, M. J. Electrochem. Soc. 1990, 137, 1196.  

    31. [31]

      (31) Kern, P.; Landolt, D. J. Electrochem. Soc. 2000, 147, 318.  

    32. [32]

      (32) Kern, P.; Agarwal, P.; Landolt, D. Design and Characterization of A Rotating Electrochemical Quartz-crystal-microbalance Electrode. German Patent DE 19911291 C2, 2001-09-21.

    33. [33]

      (33) Vatankhah, G.; Lessard, J.; Jerkiewicz, G. Electrochim. Acta 2003, 48, 1619.

    34. [34]

      (34) Méndez, A.; Diaz-Arista, P.; Trejo, G. Int. J. Electrochem. Sci. 2008, 3, 918.

    35. [35]

      (35) Kern, P.; Landolt, D. Electrochim. Acta 2001, 47, 589.  

    36. [36]

      (36) Kern, P.; Landolt, D. J. Electrochem. Soc. 2001, 148, B228.

    37. [37]

      (37) McCafferty, E. J. Electrochem. Soc. 1999, 146, 2863.  

    38. [38]

      (38) Kern, P.; Landolt, D. J. Electroanal. Chem. 2001, 500, 170.  

    39. [39]

      (39) Joiret, S.; Keddam, M.; Takenouti, H. Cem. Concr. Compos. 2002, 24, 7.  

    40. [40]

      (40) Dubois, F.; Mendibide, C.; Pagnier, T. Corrosion Sci. 2008, 50, 3401.  

    41. [41]

      (41) Xiao, K.; Dong, C.; Li, X. J. Iron steel Res. Int. 2008, 15, 42.

    42. [42]

      (42) McHale, J. M.; Auroux, A.; Perrotta, A. J. Science 1997, 277, 788.  

    43. [43]

      (43) Davenport, A. J.; Oblonsky, L. J.; Ryan, M. P. J. Electrochem. Soc. 2000, 147, 2162.  

    44. [44]

      (44) MacDonald, D. D.; Sun, A. Electrochim. Acta 2006, 51, 1767.  

    45. [45]

      (45) Zhang, Y.; MacDonald, D. D.; MacDonald, M. U. Corrosion Sci. 2006, 48, 3812.  

    46. [46]

      (46) Diáz, B.; Joiret, S.; Nóvoa, X. R. Electrochim. Acta 2004, 49, 3039.  

    47. [47]

      (47) Hamadou, L.; Kadri, A.; Benbrahim, N. Appl. Surf. Sci. 2005, 252, 1510.  

    48. [48]

      (48) Tajmir-Riahi, H. A. J. Inorg. Biochem. 1991, 42, 47.  

    49. [49]

      (49) Tajmir-Riahi, H. A. J. Inorg. Biochem. 1991, 44, 39.  

    50. [50]

      (50) Paul, R. C.; Mohini, C.; Chadha, S. L. Transition Met. Chem. 1981, 6, 300.  

    51. [51]

      (51) Chang, H. C.; Matijevi?, E. J. Colloid Interface Sci. 1983, 92, 479.  

    52. [52]

      (52) Das, C. M.; Sudersanan, M. J. Appl. Electrochem. 2003, 33, 333.  

    53. [53]

      (53) Martell, A. E.; Smith, R. M. Critical Stability Constants; Plenum: London, 1974.

    54. [54]

      (54) Martinez, S.; Stern, I. Chem. Biochem. Eng. Q. 1999, 13, 191.

    55. [55]

      (55) Sauerbrey, G. Z. Phys. 1959, 155, 206.  

    56. [56]

      (56) Gan, F.; Dai, Z.;Wang, D. Corrosion Sci. 2000, 42, 1379.  

    57. [57]

      (57) Olsson, C.; Agarwal, P.; Landolt, D. Corrosion Sci. 2000, 42, 1197.  

    58. [58]

      (58) Kern, P.; Landolt, D. Corrosion Sci. 2002, 44, 1809.  

    59. [59]

      (59) Toney, M. F.; Davenport, A. J.; Oblonsky, L. J. Phys. Rev. Lett. 1997, 79, 4282.  

    60. [60]

      (60) Li,W.; He, Q.; Hou, B. Electrochim. Acta 2007, 22, 6386.

  • 加载中
    1. [1]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    2. [2]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    3. [3]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    4. [4]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    5. [5]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    6. [6]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    7. [7]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    8. [8]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    9. [9]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    10. [10]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    11. [11]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    12. [12]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    13. [13]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    14. [14]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    15. [15]

      Qianqian Zhong Yucui Hao Guotao Yu Lijuan Zhao Jingfu Wang Jian Liu Xiaohua Ren . Comprehensive Experimental Design for the Preparation of the Magnetic Adsorbent Based on Enteromorpha Prolifera and Its Utilization in the Purification of Heavy Metal Ions Wastewater. University Chemistry, 2024, 39(8): 184-190. doi: 10.3866/PKU.DXHX202312013

    16. [16]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    17. [17]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    18. [18]

      Shasha Ma Zujin Yang Jianyong Zhang . Facile Synthesis of FeBTC Metal-Organic Gel and Its Adsorption of Cr2O72−: A Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(8): 314-323. doi: 10.3866/PKU.DXHX202401008

    19. [19]

      Zhao Lu Hu Lv Qinzhuang Liu Zhongliao Wang . Modulating NH2 Lewis Basicity in CTF-NH2 through Donor-Acceptor Groups for Optimizing Photocatalytic Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(12): 2405005-. doi: 10.3866/PKU.WHXB202405005

    20. [20]

      Renqing Lü Shutao Wang Fang Wang Guoping Shen . Computational Chemistry Aided Organic Chemistry Teaching: A Case of Comparison of Basicity and Stability of Diazine Isomers. University Chemistry, 2025, 40(3): 76-82. doi: 10.12461/PKU.DXHX202404119

Metrics
  • PDF Downloads(720)
  • Abstract views(2526)
  • HTML views(12)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return