Citation: XIA Da-Hai, SONG Shi-Zhe, WANG Ji-Hui, BI Hui-Chao, HAN Zhe-Wen. Corrosion Behavior of Tinplates in a Functional Beverage[J]. Acta Physico-Chimica Sinica, ;2012, 28(01): 121-126. doi: 10.3866/PKU.WHXB201228121 shu

Corrosion Behavior of Tinplates in a Functional Beverage

  • Received Date: 29 September 2011
    Available Online: 28 October 2011

    Fund Project: 国家重点基础研究发展规划项目(973) (2011CB610500)资助 (973) (2011CB610500)

  • In this paper, the corrosion process of a tinplate in a functional beverage was investigated using electrochemical impedance spectroscope (EIS), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), scanning probe microscopy (SPM), and X-ray photoelectron spectroscopy (XPS), and a corrosion mechanism is proposed. We conclude that an increase in the impedance modulus at low frequency is due to the corrosion product forming on the surface of the tinplate over the first 31 h. With an increase in the immersion time a decrease in the impedance modulus at low frequency is due to the detachment of the corrosion product and the corrosion of the carbon steel substrate. X-ray photoelectron spectroscopy (XPS) results show that the corrosion product is mainly composed of a Sn(II)/Sn(IV) citrate complex or an Fe(III) citrate complex. Furthermore, the corrosion product film is first enriched with Sn and then enriched with Fe after immersion in functional beverage for 24 d. We propose that the tinplate is mainly corroded by the organic acids that exist in functional beverages.
  • 加载中
    1. [1]

      (1) Huang, X. Q.; Li, N.; Cao, L. X.; Zheng, H. Mater. Lett. 2008,62, 466.  

    2. [2]

      (2) Xia, D.;Wang, J.; Song, S.; Zhong, B.; Han, Z. Advanced Materials Research 2011, 233 -235, 1747.

    3. [3]

      (3) Toniolo, R.; Pizzariello, A.; Tubaro, F.; Susmel, S.; Dossi, N.;Bontempelli, G. J. Appl. Electrochem. 2009, 39, 979.  

    4. [4]

      (4) Patrick, G.W. Anti-Corros. Method. M. 1976, 23 (6), 9.

    5. [5]

      (5) Blunden, S.;Wallace, T. Food Chem. Toxicol. 2003, 41, 1651.  

    6. [6]

      (6) Boogaard, P. J.; Boisset, M.; Blunden, S.; Davies, S.; Ong, T. J.;Taverne, J. P. Food Chem. Toxicol. 2003, 41, 1663.  

    7. [7]

      (7) Huang, B. X.; Tornatore, P.; Li, Y. S. Electrochim. Acta 2000,46, 671.

    8. [8]

      (8) Sasaki, T.; Kanagawa, R.; Ohtsuka, T.; Miura, K. Corrosion Sci.2003, 45, 847.  

    9. [9]

      (9) Tselesh, A.S. Thin Solid Films 2008, 516, 1037.  

    10. [10]

      (10) Refaey, S. A. M.; Schwitzgebel, G. Appl. Surf. Sci. 1998, 135

    11. [11]

      (1-4), 243.

    12. [12]

      (11) Jafarian, M.; bal, F.; Danaee, I.; Biabani, R.; Mahjani, M. G.Electrochim. Acta 2008, 53, 4528.  

    13. [13]

      (12) El-Sherbini, E. E. F.; Abd-El-Wahab, S. M.; Amin, M. A.;Deyab, M. A. Corrosion Sci. 2006, 48, 1885.  

    14. [14]

      (13) Almeida, C. M. V. B.; Giannetti, B. F. Mater. Chem. Phys. 2001,69 (1-3), 261.

    15. [15]

      (14) Gervasi, C. A.; Palacios, P. A.; Bimbi, M. V. F.; Alvarez, P. E.J. Electroanal. Chem. 2010, 639 (1-2), 141.

    16. [16]

      (15) Zumelzua, E.; Cabezasb, C. Mater. Charact. 1995, 34, 143.  

    17. [17]

      (16) Kontominas, M. G.; Prodromidis, M. I.; Paleolo s, E. K.;Badeka, A. V.; Georgantelis, D. Food Chem. 2006, 98, 225.  

    18. [18]

      (17) Haanappel, V. A. C.; Stroosnijder, M. F. Corrosion 2001, 57,557.  

    19. [19]

      (18) Doherty, M.; Sykes, J. M. Corrosion Sci. 2008, 50, 2755.  

    20. [20]

      (19) Liu, X.; Xiong, J.; Lv, Y.; Zuo, Y. Prog. Org. Coat. 2009, 64,497.  

    21. [21]

      (20) Zhang,W.;Wang, J.; Zhao, Z. Y.; Jiang, J. Chem. J. Chin. Univ.2009, 30, 762. [张伟, 王佳, 赵增元, 姜晶. 高等学校化学学报, 2009, 30, 762.]

    22. [22]

      (21) Rezaei, F.; Sharif, F.; Sarabi, A. A.; Kasiriha, S. M.; Rahmanian,M.; Akbarinezhad, E. J. Coat. Technol. Res. 2010, 7, 209.  

    23. [23]

      (22) Zhu, Y. F.; Xiong, J. P.; Tang, Y. M.; Zuo, Y. Prog. Org. Coat.2010, 69, 7.  

    24. [24]

      (23) Betova, I.; Bojinov, M.; Karastoyanov, V.; Kinnunen, P.; Saario,T. Electrochim. Acta 2010, 55, 6163.  

    25. [25]

      (24) Huang, X. Q.; Li, N.;Wang, H. Y.; Sun, H. X.; Sun, S. S.;Zheng, H. Thin Solid Films 2008, 516, 1037.  

    26. [26]

      (25) Graat, P. C. J.; Somers, M. A. J. Appl. Surf. Sci. 1996, 100-101,36.

    27. [27]

      (26) Abd El Rehim, S. S.; Hassan, H. H.; Mohamed, N. F. Corrosion Sci. 2004, 46, 1071.  

  • 加载中
    1. [1]

      Yong Zhou Jia Guo Yun Xiong Luying He Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, 2024, 39(7): 330-336. doi: 10.3866/PKU.DXHX202310109

    2. [2]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    3. [3]

      Li Jiang Changzheng Chen Yang Su Hao Song Yanmao Dong Yan Yuan Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002

    4. [4]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    5. [5]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    6. [6]

      Xuan Zhou Yi Fan Zhuoqi Jiang Zhipeng Li Guowen Yuan Laiying Zhang Xu Hou . Liquid Gating Mechanism and Basic Properties Characterization: a New Experimental Design for Interface and Surface Properties in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 113-120. doi: 10.12461/PKU.DXHX202407111

    7. [7]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    8. [8]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    9. [9]

      Wei Li Guoqiang Feng Ze Chang . Teaching Reform of X-ray Diffraction Using Synchrotron Radiation in Materials Chemistry. University Chemistry, 2024, 39(3): 29-35. doi: 10.3866/PKU.DXHX202308060

    10. [10]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    11. [11]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    12. [12]

      Zhengli Hu Jia Wang Yi-Lun Ying Shaochuang Liu Hui Ma Wenwei Zhang Jianrong Zhang Yi-Tao Long . Exploration of Ideological and Political Elements in the Development History of Nanopore Electrochemistry. University Chemistry, 2024, 39(8): 344-350. doi: 10.3866/PKU.DXHX202401072

    13. [13]

      Cunming Yu Dongliang Tian Jing Chen Qinglin Yang Kesong Liu Lei Jiang . Chemistry “101 Program” Synthetic Chemistry Experiment Course Construction: Synthesis and Properties of Bioinspired Superhydrophobic Functional Materials. University Chemistry, 2024, 39(10): 101-106. doi: 10.12461/PKU.DXHX202408008

    14. [14]

      Yajun Jian Quanguo Zhai Quan Gu Shengli Gao . Reconstruction and Practice of the Teaching Content of “Carbon Group Elements” in Inorganic Chemistry to Reflect Comprehensive Education Function. University Chemistry, 2024, 39(11): 96-107. doi: 10.12461/PKU.DXHX202403006

    15. [15]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    16. [16]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    17. [17]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    18. [18]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    19. [19]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    20. [20]

      Zhonghua Xi Xuanfeng Kong Jinyue Yang Bin Liu Tingyu Zhu Hui Zhang Wenwei Zhang . Construction of Public Teaching Instrument Platform and Exploration of Opening Mechanism. University Chemistry, 2024, 39(7): 200-206. doi: 10.12461/PKU.DXHX202405123

Metrics
  • PDF Downloads(792)
  • Abstract views(2458)
  • HTML views(11)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return