Citation: XU Ke, SHEN Lai-Fa, MI Chang-Huan, ZHANG Xiao-Gang. Synthesis and Electrochemical Performance of Graphene Modified LiFePO4 Cathode Materials[J]. Acta Physico-Chimica Sinica, ;2012, 28(01): 105-110. doi: 10.3866/PKU.WHXB201228105 shu

Synthesis and Electrochemical Performance of Graphene Modified LiFePO4 Cathode Materials

  • Received Date: 26 July 2011
    Available Online: 20 October 2011

    Fund Project: 国家重点基础研究发展计划项目(973) (2007CB209703) (973) (2007CB209703) 国家自然科学基金(20873064, 21173120, 21103090) (20873064, 21173120, 21103090) 江苏省普通高校科研创新计划(CXZZ11_0204) (CXZZ11_0204)南京航空航天大学博士学位论文创新与创优基金资助(BCXJ11-10) (BCXJ11-10)

  • Graphene-modified mesoporous LiFePO4 microsphere composites were synthesized by a hydrothermal method and subsequent annealing. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectroscopy, and galvanostatic charge-discharge techniques were used to characterize the morphology, structure and electrochemical performance of the resulting composites. The graphene-modified LiFePO4 microspheres exhibited a high discharge capacity of 141 mAh·g-1 at 1C, and 105 mAh·g-1 at 50C, while LiFePO4/C only delivered 137 mAh·g-1 at 1C, 64 mAh·g-1 at 50C in an aqueous electrolyte of 2 mol·L-1 LiNO3. The graphene-modified LiFePO4 exhibited excellent cyclability compared with LiFePO4/C, with a capacity retention of about 83.7% after 60 cycles versus about 70.2% for LiFePO4/C. The improved electrochemical performance is attributed to the formation of a three-dimensional (3D) graphene network.
  • 加载中
    1. [1]

      (1) Padhi, A. K.; Nanjundaswamy, K. S.; Masquelier, C.; Okada, S.; odenough, J. B. J. Electrochem. Soc. 1997, 144, 1188.  

    2. [2]

      (2) Padhi, A. K.; Nanjundaswamy, K. S.; Masquelier, C.; Okada, S.; odenough, J. B. J. Electrochem. Soc. 1997, 144, 1609.  

    3. [3]

      (3) Ravet, N.; odenough, J. B.; Besner, S.; Simoneau, M.; Hovington, P.; Armand, M. Proceedings of the 196th ECS Meeting, Honolulu, HI, Oct 1999; pp 17-22.

    4. [4]

      (4) Belharouak, I.; Johnson, C.; Amine, K. Electrochem. Commun. 2005, 7, 983.  

    5. [5]

      (5) Takeuchi, T.; Tabuchi, M.; Nakashima, A.; Nakamura, T.; Miwa, Y.; Kageyama, H.; Tatsumi, K. J. Power Sources 2005, 146, 575.  

    6. [6]

      (6) Chen, Z. Y.; Zhu, H. L.; Ji, S.; Fakir, R.; Linkov, V. Solid State Ionics 2008, 179, 1810.  

    7. [7]

      (7) Chen, Z. H.; Dahn, J. R. J. Electrochem. Soc. 2002, 149, A1184.

    8. [8]

      (8) Zhang, D.; Cai, R.; Zhou, Y. K.; Shao, Z. P.; Liao, X. Z.; Ma, Z. F. Electrochim. Acta 2010, 55, 2653.  

    9. [9]

      (9) Chung, S. Y.; Bloking, J. T.; Chiang, Y. M. Nat. Mater. 2002, 1, 123.  

    10. [10]

      (10) Wang, Y.;Wang, Y.; Hosono, E.;Wang, K.; Zhou, H. Angew. Chem. Int. Edit. 2008, 47, 7461.  

    11. [11]

      (11) Qian, J. F.; Zhou, M.; Cao, Y. L.; Ai, X. P.; Yang, H. X. J. Phys. Chem. C 2010, 114, 3477.  

    12. [12]

      (12) Liu, J. L.; Jiang, R. R.;Wang, X.; Huang, T.; Yu, A. S. J. Power Sources 2009, 194, 536.  

    13. [13]

      (13) Kostecki, R.; Schnyder, B.; Alliata, D.; Song, X.; Kinoshita, K.; Kotz, R. Thin Solid Films 2001, 396, 36.  

    14. [14]

      (14) He, P.; Zhang, X.;Wang, Y. G.; Cheng, L.; Xia, Y. Y. J. Electrochem Soc. 2008, 155, A144.

    15. [15]

      (15) Luo, J. Y.; Cui,W. J.; He, P.; Xia, Y. Y. J. Nat. Chem. 2010, 2, 760.  

    16. [16]

      (16) He, P.; Liu, J. L.; Cui,W. J.; Luo, J. Y.; Xia, Y. Y. Electrochim. Acta. 2011, 56, 2351.  

    17. [17]

      (17) Chen, S. Y.; Gao, B.; Su, L. H.; Mi, C. H.; Zhang, X. G. J. Solid State Electrochem. 2009, 13, 1361.  

    18. [18]

      (18) Su, F. Y.; You, C. H.; He, Y. B.; Lv,W.; Cui,W.; Jin, F. M.; Li, B. H.; Yang, Q. H.; Kang, F. Y. J. Mater. Chem. 2010, 20, 9644.  

    19. [19]

      (19) Hummers,W. S.; Offeman, R. E. J. Am. Chem. Soc. 1958, 80, 1339.  

    20. [20]

      (20) Wang, D. Y.; Li, H.; Shi, S. Q.; Huang, X. J.; Chen, L. Q. Electrochim. Acta 2005, 50, 2955.  

    21. [21]

      (21) Shi, Z. C.; Ye,W. L.;Wang, Q.; Li, Y. X.; Yang, Y. Electrochim. Acta 2008, 53, 2665.  

    22. [22]

      (22) Szabo, T.; Berkesi, O.; Dekany, I. Carbon 2005, 43, 3186.  

    23. [23]

      (23) Burba, C. M.; Frech, R. J. Electrochem Soc. 2004, 151, A1032.

    24. [24]

      (24) Julien, C.M.; Zaghib, K.; Mauger, A.; Massot, M.; Salah, A. A.; Selmane, M.; Gendron, F. J. Appl. Phys. 2006, 100, 063511.  

    25. [25]

      (25) Dresselhaus, M.S.; Dresselhaus, G. Light Scattering in Solids, 3rd ed.; Springer: Berlin, 1982; p 3.

    26. [26]

      (26) Morishita, T.; Soneda, Y.; Hatori, H.; Inagaki, M. Electrochim. Acta 2007, 52, 2478.  

    27. [27]

      (27) Appapillai, A. T.; Mansour, A. N.; Cho, J.; Yang, S. H. Chem. Mater. 2007, 19, 5748.  

    28. [28]

      (28) Mai, L. Q.; Yang, F.; Zhao, Y. L.; Xu, X.; Xu, L.; Luo, Y. Z. Nat. Commun. 2011, 2, 381.  

    29. [29]

      (29) Shen, L. F.; Yuan, C. Z.; Luo, H. J.; Zhang, X. G.; Yang, S. D.; Lu, X. Nanoscale 2011, 3, 572.  

  • 加载中
    1. [1]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    2. [2]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    3. [3]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    4. [4]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    5. [5]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    6. [6]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    7. [7]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    8. [8]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    9. [9]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    10. [10]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    11. [11]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    12. [12]

      Zhihong LUOYan SHIJinyu ANDeyi ZHENGLong LIQuansheng OUYANGBin SHIJiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444

    13. [13]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    14. [14]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    15. [15]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    16. [16]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    17. [17]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    18. [18]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    19. [19]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    20. [20]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

Metrics
  • PDF Downloads(1890)
  • Abstract views(3651)
  • HTML views(11)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return