Citation: TANG Jing, PANG Wen-Hui, Ren He, CHEN Qiao-Lan, SONG Zi-Wang, LIN Jian-Hang. Rapid Transfer of Au Nanoparticle Pattern onto ITO Substrate Using Microcontact Printing Technique[J]. Acta Physico-Chimica Sinica, ;2013, 29(03): 612-618. doi: 10.3866/PKU.WHXB201212281 shu

Rapid Transfer of Au Nanoparticle Pattern onto ITO Substrate Using Microcontact Printing Technique

  • Received Date: 9 October 2012
    Available Online: 28 December 2012

    Fund Project: 国家自然科学基金(21173048, 21073038)资助项目 (21173048, 21073038)

  • A poly(dimethylsiloxane) (PDMS) stamp was electrolessly plated using a cyanide-free solution. ld nanoparticles (AuNPs) were transferred from the PDMS stamp to indium tin oxide (ITO), (3- mercaptopropyl) trimethoxysilane modified ITO (MPTMS/ITO), and an ITO substrate electrodeposited with a thin copper film (Cu/ITO). AuNPs formed well-ordered structures which were characterized by field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), and Raman spectroscopy. Microcontact printing allowed thin AuNPs films to be directly transferred from PDMS to substrate, so is a simple, fast, cheap and environmentally-friendly technique. AuNPs patterned on the ITO substrate exhibited surface-enhanced Raman spectroscopy (SERS) activity which will be investigated in subsequent studies.

  • 加载中
    1. [1]

      (1) Bratton, D.; Yang, D.; Dai, J.; Ober, C. K. Polym. Adv. Technol.2006, 17, 94.

    2. [2]

      (2) Mendes, P. M.; Jacke, S.; Critchley, K.; Plaza, J.; Chen, Y.;Nikitin, K.; Palmer, R. E.; Preece, J. A.; Evans, S. D.;Fitzmaurice, D. Langmuir 2004, 20, 3766. doi: 10.1021/la049803g

    3. [3]

      (3) Kim, S. O.; Solak, H. H.; Stoykovich, M. P.; Ferrier, N. J.; dePablo, J. J.; Nealey, P. F. Nature 2003, 424, 411. doi: 10.1038/nature01775

    4. [4]

      (4) Xia, Y.; Whitesides, G. M. Angew. Chem. Int. Edit. 1998, 37,550.

    5. [5]

      (5) Qin, D.; Xia, Y.; Whitesides, G. M. Nat. Protoc. 2010, 5, 491.doi: 10.1038/nprot.2009.234

    6. [6]

      (6) Rogers, J.; Nuzzo, R. Mater. Today 2005, 8, 50.

    7. [7]

      (7) Gao, H.; svami, N. N.; Deng, J.; Tan, L. S.; Sander, M. S.Langmuir 2006, 22, 8078. doi: 10.1021/la060658b

    8. [8]

      (8) Kolb, D. M.; Simeone, F. C. Electrochim. Acta 2005, 50, 2989.doi: 10.1016/j.electacta.2004.12.042

    9. [9]

      (9) Porter, L. A.; Choi, H. C.; Schmeltzer, J. M.; Ribbe, A. E.;Elliott, L. C. C.; Buriak, J. M. Nano Lett. 2002, 2, 1369. doi: 10.1021/nl025790k

    10. [10]

      (10) Ruiz, S. A.; Chen, C. S. Soft Matter 2007, 3, 168.

    11. [11]

      (11) Kumar, A.; Whitesides, G. M. Appl. Phys. Lett. 1993, 63, 2002.

    12. [12]

      (12) Whitesides, G. M.; Ostuni, E.; Takayama, S.; Jiang, X. Y.;Ingber, D. E. Annu. Rev. Biomed. Eng. 2001, 3, 335.

    13. [13]

      (13) Liu, J.; Ye, Q.; Yu, B.;Wang, X.; Zhou, F. Chem. Commun.2012, 48, 398.

    14. [14]

      (14) Schmalenberg, K. E.; Buettner, H. M.; Uhrich, K. E.Biomaterials 2004, 25, 1851.

    15. [15]

      (15) Daniel, M. C.; Astruc, D. Chem. Rev. 2004, 104, 293.

    16. [16]

      (16) Saha, K.; Agasti, S. S.; Kim, C.; Li, X.; Rotello, V. M. Chem.Rev. 2012, 112, 2739.

    17. [17]

      (17) Nguyen, D. T.; Kim, D. J.; Kim, K. S. Micron 2011, 42, 207.

    18. [18]

      (18) Eustis, S.; El-Sayed, M. A. Chem. Soc. Rev. 2006, 35, 209.

    19. [19]

      (19) Sharma, J.; Ke, Y.; Lin, C.; Chhabra, R.;Wang, Q.; Nangreave,J.; Liu, Y.; Yan, H. Angew. Chem. Int. Edit. 2008, 47, 5157.

    20. [20]

      (20) Shipway, A. N.; Katz, E.;Willner, I. ChemPhysChem 2000, 1, 18.

    21. [21]

      (21) Feng, X.; Meitl, M. A.; Bowen, A. M.; Huang, Y.; Nuzzo, R. G.;Rogers, J. A. Langmuir 2007, 23, 12555.

    22. [22]

      (22) Hidber, P. C.; Helbig,W.; Kim, E.; Whitesides, G. M. Langmuir1996, 12, 1375.

    23. [23]

      (23) Santhanam, V.; Andres, R. P. Nano Lett. 2003, 4, 41.

    24. [24]

      (24) Chien, H.W.; Kuo,W. H.;Wang, M. J.; Tsai, S.W.; Tsai,W. B.Langmuir 2012, 28, 5775.

    25. [25]

      (25) Xue, M.; Zhang, Z.; Zhu, N.;Wang, F.; Zhao, X.; Cao, T.Langmuir 2009, 25, 4347.

    26. [26]

      (26) Nie, S.; Emory, S. R. Science 1997, 275, 1102.

    27. [27]

      (27) Le Ru, E. C.; Etche in, P. G. Principles of Surface-EnhancedRaman Spectroscopy, 1st ed.; Elsevier Science: Great Britain,2008; pp 367-385.

    28. [28]

      (28) Bai, H. J.; Shao, M. L.; u, H. L.; Xu, J. J.; Chen, H. Y.Langmuir 2009, 25, 10402.

    29. [29]

      (29) u, H. L.; Xu, J. J.; Xia, X. H.; Chen, H. Y. ACS Appl. Mater.Interfaces 2010, 2, 1324.

    30. [30]

      (30) Wu, J.; Bai, H. J.; Zhang, X. B.; Xu, J. J.; Chen, H. Y. Langmuir2009, 26, 1191.

    31. [31]

      (31) Tang, J.; Tian, X. C.; Zhou, F. Q.; Liu, Y. Q.; Lin, J. H. ActaPhys. -Chim. Sin. 2011, 27, 641. [汤儆, 田晓春, 周富庆,刘跃强, 林建航. 物理化学学报, 2011, 27, 641]. doi: 10.3866/PKU.WHXB20110322

    32. [32]

      (32) Tang, J.; Tian, X. C.; Pang,W. H.; Liu, Y. Q.; Lin, J. H.Electrochim. Acta 2012, 81, 8.

    33. [33]

      (33) Ballarin, B.; Cassani, M. C.; Scavetta, E.; Tonelli, D.Electrochim. Acta 2008, 53, 8034.

    34. [34]

      (34) Wang, H.; Huang, Y.; Tan, Z.; Hu, X. Anal. Chim. Acta 2004,526, 13.

    35. [35]

      (35) Huang, Y. F.;Wu, D. Y.; Zhu, H. P.; Zhao, L. B.; Liu, G. K.;Ren, B.; Tian, Z. Q. Phys. Chem. Chem. Phys. 2012, 14, 8485.

    36. [36]

      (36) Osawa, M.; Matsuda, N.; Yoshii, K.; Uchida, I. J. Phys. Chem.1994, 98, 12702.

    37. [37]

      (37) Zong, S.;Wang, Z.; Yang, J.; Cui, Y. Anal. Chem. 2011, 83,4178.


  • 加载中
    1. [1]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    2. [2]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    3. [3]

      Lina Liu Xiaolan Wei Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112

    4. [4]

      Huihui LIUBaichuan ZHAOChuanhui WANGZhi WANGCongyun ZHANG . Green synthesis of MIL-101/Au composite particles and their sensitivity to Raman detection of thiram. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2021-2030. doi: 10.11862/CJIC.20240059

    5. [5]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    6. [6]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    7. [7]

      Jingyi Chen Fu Liu Tiejun Zhu Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111

    8. [8]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    9. [9]

      Zhaoyue Lü Zhehao Chen Yi Ni Duanbin Luo Xianfeng Hong . Multi-Level Teaching Design and Practice Exploration of Raman Spectroscopy Experiment. University Chemistry, 2024, 39(11): 304-312. doi: 10.12461/PKU.DXHX202402047

    10. [10]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    11. [11]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    12. [12]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    13. [13]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    14. [14]

      Gaofeng Zeng Shuyu Liu Manle Jiang Yu Wang Ping Xu Lei Wang . Micro/Nanorobots for Pollution Detection and Toxic Removal. University Chemistry, 2024, 39(9): 229-234. doi: 10.12461/PKU.DXHX202311055

    15. [15]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    16. [16]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    17. [17]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    18. [18]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    19. [19]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    20. [20]

      Tingting Yu Si Chen Lianglong Sun Tongtong Shi Kai Sun Xin Wang . Comprehensive Experimental Design for the Photochemical Synthesis, Analysis, and Characterization of Difluoropyrroles. University Chemistry, 2024, 39(11): 196-203. doi: 10.3866/PKU.DXHX202401022

Metrics
  • PDF Downloads(1337)
  • Abstract views(1164)
  • HTML views(21)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return