Citation: CUI Xiao-Yan, HAN Shu-Hua, SUN Yuan-Yuan, WANG Sha-Sha, QIU Xiao-Yong, GAO Meng. Synthesis and Optical Properties of Organic-Inorganic Hybrid Mesoporous Materials with Naphthalene Bridging Groups[J]. Acta Physico-Chimica Sinica, ;2013, 29(03): 639-645. doi: 10.3866/PKU.WHXB201212201 shu

Synthesis and Optical Properties of Organic-Inorganic Hybrid Mesoporous Materials with Naphthalene Bridging Groups

  • Received Date: 20 September 2012
    Available Online: 20 December 2012

    Fund Project: 国家自然科学基金(50572057, 21033005) (50572057, 21033005)山东省自然科学基金(ZR2010BM026)资助项目 (ZR2010BM026)

  • Ordered naphthalene-bridged hybrid periodic mesoporous organosilicas (PMOs) were synthesized by co-condensation of 2,7-bis(3-triethoxysilylpropylaminocarbonyloxy) naphthalene (NIS) and tetraethoxy orthosilane (TEOS) using cationic trimeric surfactant C10H21N+(CH3)2(CH2)2N+(CH3)(C10H21)(CH2)2N+(CH3)2C10H21]·3Br? as a structure-directing agent. The resulting samples were characterized by powder X-ray diffraction, high resolution transmission electron microscopy, nitrogen adsorption-desorption, and differential scanning calorimetry/thermogravimetric analysis. Ordered mesoporous hybrid materials with a crystal-like pore wall formed when the molar ratio of NIS to the sum of NIS and TEOS was 40%. When this value is below or above 40%, ordered mesoporous hybrid materials with amorphous phase in the pore walls, and nonporous hybrid materials are obtained, respectively. As the number of naphthyl groups in the pore walls increases, the thermal stability of the hybrid materials is enhanced through the strong π-π interactions between organic groups. Because of the fluorescent naphthyl groups in the silica framework, the PMOs exhibit optical behavior consistent with excimer formation. Absorption spectra of the PMOs show blue shifts compared with that of the precursor (NIS), suggesting the formation of aggregates in the pore walls of the hybrid materials. As the molar ratio of NIS to the sum of NIS and TEOS increases, the fluorescence quantum yield of the PMOs decreases through fluorescence quenching caused by aggregation of naphthyl groups.

  • 加载中
    1. [1]

      (1) Mizoshita, N.; Tani, T.; Inagaki, S. Chem. Soc. Rev. 2011, 40,789. doi: 10.1039/c0cs00010h

    2. [2]

      (2) Hoffmann, F.; Cornelius, M.; Morell, J.; Froba, M. Angew.Chem. Int. Edit. 2006, 45, 3216.

    3. [3]

      (3) Fujita, S.; Inagaki, S. Chem. Mater. 2008, 20, 891. doi: 10.1021/cm702271v

    4. [4]

      (4) Wirnsberger, G.; Scott, B. J.; Stucky, G. D. Chem. Commun.2001, 119.

    5. [5]

      (5) Hernandez, R.; Franville, A. C.; Minoofar, P.; Dun, B.; Zink, J.I. J. Am. Chem. Soc. 2001, 123, 1248. doi: 10.1021/ja003634e

    6. [6]

      (6) Minoofar, P. N.; Hernandez, R.; Chia, S.; Dunn, B.; Zink, J. I.;Franville, A. C. J. Am. Chem. Soc. 2002, 124, 14388. doi: 10.1021/ja020817n

    7. [7]

      (7) Yang, Q.; Liu, J.; Yang, J.; Kapoor, M. P.; Inagaki, S.; Li, C.J. Catal. 2004, 228, 265. doi: 10.1016/j.jcat.2004.09.007

    8. [8]

      (8) to, Y.; Mizoshita, N.; Ohtani, O.; Okada, T.; Shimada, T.;Tani, T.; Inagaki, S. Chem. Mater. 2008, 20, 4495. doi: 10.1021/cm800492s

    9. [9]

      (9) Wong, E. M.; Markowitz, M. A.; Qadri, S. B.; lledge, S.;Castner, D. G.; Gaber, B. P. J. Phys. Chem. B 2002, 106, 6652.doi: 10.1021/jp014201g

    10. [10]

      (10) Rebbin, V.; Schmidt, R.; Froba, M. Angew. Chem. Int. Edit.2006, 45, 5210.

    11. [11]

      (11) Zhao, H. M.; Lin, D.; Yang, G.; Chun, Y.; Xu, Q. H. ActaPhys. -Chim. Sin. 2012, 28, 985. [赵会民, 林丹, 杨刚,淳远, 须沁华. 物理化学学报, 2012, 28, 985.] doi: 10.3866/PKU.WHXB201202071

    12. [12]

      (12) Ji, Q.; Miyahara, M.; Hill, J. P.; Acharya, A.; Vinu, A.; Yoon, S.K.; Yu, J. S.; Sakamoto, K.; Ariga, K. J. Am. Chem. Soc. 2008,130, 2376. doi: 10.1021/ja076139s

    13. [13]

      (13) Angelome, P. C.; Soller-Ilia, G. J. A. A. Chem. Mater. 2005, 17,322. doi: 10.1021/cm048559b

    14. [14]

      (14) Gao, G. D.; Li, J.; Zhang, A. Y.; An, X. H.; Zhou, L. ActaPhys. -Chim. Sin. 2010, 26, 2437. [高冠道, 李婧, 张爱勇,安晓红, 周蕾. 物理化学学报, 2010, 26, 2437.] doi: 10.3866/PKU.WHXB20100910

    15. [15]

      (15) Inagaki, S.; Guan, S.; Fukushima, Y.; Ohsuna, T.; Terasaki, O.J. Am. Chem. Soc. 1999, 121, 9611. doi: 10.1021/ja9916658

    16. [16]

      (16) Melde, B. J.; Holland, B. T.; Blanford, C. F.; Stein, A. Chem.Mater. 1999, 11, 3302. doi: 10.1021/cm9903935

    17. [17]

      (17) Asefa, T.; MacLachlan, M. J.; Coombs, N.; Ozin, G. A. Nature1999, 402, 867.

    18. [18]

      (18) Yoshina-Ishii, C.; Azefa, T.; Coombs, N.; MacLachlan, M. J.;Ozin, G. A. Chem. Commun. 1999, 2539.

    19. [19]

      (19) Fujita, S.; Inagaki, S. Chem. Mater. 2008, 20, 891. doi: 10.1021/cm702271v

    20. [20]

      (20) Inagaki, S.; Ohtani, O.; to, Y.; Okamoto, K.; Ikai, M.;Yamanaka, K.; Tani, T.; Okada, T. Angew. Chem. Int. Edit. 2009,48, 4042. doi: 10.1002/anie.v48:22

    21. [21]

      (21) Liu, A. F.; Han, S. H.; Che, H.W.; Hua, L. Langmuir 2010, 26,3555. doi: 10.1021/la904052k

    22. [22]

      (22) Wang, X.; Lu, D.; Austin, R.; Agarwal, A.; Mueller, L. J.; Liu,Z.;Wu, J.; Feng, P. Langmuir 2007, 23, 5735. doi: 10.1021/la063507h

    23. [23]

      (23) Shea, K. J.; Loy, D. A.;Webster, O. J. Am. Chem. Soc. 1992,114, 6700. doi: 10.1021/ja00043a014

    24. [24]

      (24) Loy, D. A.; Jamison, G. M.; Baugher, B. M.; Myers, S. A.;Assink, R. A.; Shea, K. J. Chem. Mater. 1996, 8, 656. doi: 10.1021/cm950067z

    25. [25]

      (25) Zhao, X. S.; Lu, G. Q.; Hu, X. Chem. Commun. 1999, 1391.

    26. [26]

      (26) Shen, J. L.; Yang, X. G.; Huang, L.; Shen, Q. L.; Liu, Z. H.;Zhang, F. J. Acta Phys. -Chim. Sin. 2012, 28, 1992. [申剑磊,杨新国, 黄燎, 沈启立, 刘振辉, 张凤菊. 物理化学学报,2012, 28, 1992.] doi: 10.3866/PKU.WHXB201205282

    27. [27]

      (27) Chen, G. Z.; Huang, X. Z.; Zheng, Z. Z.; Xu, J. G.;Wang, Z. B.Fluorescence Analyzing Technology, 2nd ed.; Science Press:Beijing, 1990; p 38. [陈国珍, 黄贤智, 郑朱梓, 徐金钩, 王尊本. 荧光分析技术. 第二版. 北京: 科学出版社, 1990: 38.]


  • 加载中
    1. [1]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    2. [2]

      Chen LUQinlong HONGHaixia ZHANGJian ZHANG . Syntheses, structures, and properties of copper-iodine cluster-based boron imidazolate framework materials. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 149-154. doi: 10.11862/CJIC.20240407

    3. [3]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    4. [4]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    5. [5]

      YanYuan Jia Rong Rong Jie Liu Jing Guo GuoYu Jiang Shuo Guo . Unity is Strength, and Independence Shines: A Science Popularization Experiment on AIE and ACQ Effects. University Chemistry, 2024, 39(9): 349-358. doi: 10.12461/PKU.DXHX202402035

    6. [6]

      Qin Li Kexin Yang Qinglin Yang Xiangjin Zhu Xiaole Han Tao Huang . Illuminating Chlorophyll: Innovative Chemistry Popularization Experiment. University Chemistry, 2024, 39(9): 359-368. doi: 10.3866/PKU.DXHX202309059

    7. [7]

      Zehua Zhang Haitao Yu Yanyu Qi . 多重共振TADF分子的设计策略. Acta Physico-Chimica Sinica, 2025, 41(1): 2309042-. doi: 10.3866/PKU.WHXB202309042

    8. [8]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    9. [9]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    10. [10]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    11. [11]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    12. [12]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    13. [13]

      Mengzhen JIANGQian WANGJunfeng BAI . Research progress on low-cost ligand-based metal-organic frameworks for carbon dioxide capture from industrial flue gas. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 1-13. doi: 10.11862/CJIC.20240355

    14. [14]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    15. [15]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    16. [16]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    17. [17]

      Xiaofang DONGYue YANGShen WANGXiaofang HAOYuxia WANGPeng CHENG . Research progress of conductive metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 14-34. doi: 10.11862/CJIC.20240388

    18. [18]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    19. [19]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    20. [20]

      Yukai Jiang Yihan Wang Yunkai Zhang Yunping Wei Ying Ma Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033

Metrics
  • PDF Downloads(722)
  • Abstract views(2068)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return