Citation: BAO Shi-Long, CHEN Wang-Hua, CHEN Li-Ping, GAO Hai-Su, LÜ Jia-Yu. Identification and Thermokinetics of Autocatalytic Exothermic Decomposition of 2,4-Dinitrotoluene[J]. Acta Physico-Chimica Sinica, ;2013, 29(03): 479-485. doi: 10.3866/PKU.WHXB201212141 shu

Identification and Thermokinetics of Autocatalytic Exothermic Decomposition of 2,4-Dinitrotoluene

  • Received Date: 28 September 2012
    Available Online: 14 December 2012

    Fund Project: 国家自然科学基金(51204099)资助项目 (51204099)

  • The thermal stability and autocatalytic decomposition of 2,4-dinitrotoluene (2,4-DNT) is investigated under dynamic and isothermal conditions using differential scanning calorimetry (DSC). The temperature range of initial exothermic temperature (T0) is 272.4-303.5℃, and its decomposition enthalpy (ΔHd) is about 2.22 kJ·g-1. An identification method based on a numerical simulation technique from the Swiss Institute for the Promotion of Safety and Security (Swiss method) is used to determine the characteristic parameters of the decomposition reaction, revealing that the decomposition of 2,4-DNT is potentially autocatalytic. The Malek method is used to determine the most probable mechanism function and kinetic parameters of 2,4-DNT decomposition. The Sestak-Berggren model with two parameters is suitable to describe the autocatalytic decomposition of 2,4-DNT, which is consistent with the results of the Swiss method and isothermal experimental results. Isothermal DSC experiments confirmed that the decomposition of 2,4-DNT is autocatalytic.

  • 加载中
    1. [1]

      (1) Sun, J. H.; Lu, S. X.; Sun, Z. H. Chin. Saf. Sci. J. 2003, 13 (4), 44.[孙金华, 陆守香, 孙占辉. 中国安全科学学报, 2003, 13 (4), 44.]

    2. [2]

      (2) Wu, Z. Z.; Zhang, S. Z.; Zhang, Y.; Shi, C.; Liu, N.; Yang, G. L.J. Saf. Sci. Tech. 2011, 7 (7), 5. [吴宗之, 张圣柱, 张悦, 石超, 刘宁, 杨国梁. 中国安全生产科学技术, 2011, 7 (7), 5.]

    3. [3]

      (3) Zhao, L. J.;Wu, P.; Xu, K. Chin. Saf. Sci. J. 2009, 19 (7), 165.[赵来军, 吴萍, 许科. 中国安全科学学报, 2009, 19 (7), 165.]

    4. [4]

      (4) Stoessel, F. Thermal Safety of Chemical Process: RiskAssessment and Process Design; Science Press: Beijing, 2009;pp 56, 271-287; translated by Chen,W. H., Peng, J. H., Chen,L. P. [Stoessel, F. 化工工艺热安全, 风险评估与工艺设计.陈网桦, 彭金华, 陈利平译. 北京: 科学出版社, 2009: 56,271-287.]

    5. [5]

      (5) Guo, M. C.; Chu, S. J.; Feng, C. G.; He, G. B. Explo. Sho. Wav.1995, 15 (2), 107. [郭明朝, 楚士晋, 冯长根, 何光斌. 爆炸与冲击, 1995, 15 (2), 107.]

    6. [6]

      (6) Jia, H. P.; Bai, M. L. Acta Armamentarii 1993, No. 4, 53. [贾会平, 白木兰. 兵工学报, 1993, No. 4, 53.]

    7. [7]

      (7) Zhang, H.; Xia, Z. M.; Guo, P. J.; Hu, R. Z.; Gao, S. L.; Ning,B. K.; Fang, Y.; Shi, Q. Z.; Liu, R. J. Hazard. Mater. 2002, 94 (3), 205. doi: 10.1016/S0304-3894(02)00118-8

    8. [8]

      (8) Hu, R. Z.; Guo, P. J.; Song, J. R.; Zhang, H.; Xia, Z. M.; Ning,B. K.; Fang, Y.; Shi, Q. Z.; Liu, R.; Lu, G. E.; Jiang, J. Y. Chin.J. Explo. Prop. 2003, 26 (2), 53. [胡荣祖, 郭鹏江, 宋纪蓉,张海, 夏志明, 宁斌科, 房艳, 史启祯, 刘蓉, 路桂娥,江劲勇. 火炸药学报, 2003, 26 (2), 53.]

    9. [9]

      (9) Hu, R. Z.; Ning, B. K.; Yang, Z. Q.; Song, J. R.; Gao, S. L.; Shi,Q. Z.; Lu, G. E.; Jiang, J. Y. Chin. J. Explo. Prop. 2004, 27 (2),67. [胡荣祖, 宁斌科, 杨正权, 宋纪蓉, 高胜利, 史启祯, 路桂娥, 江劲勇. 火炸药学报, 2004, 27 (2), 67.]

    10. [10]

      (10) Ning, B. K.; Hu, R. Z.; Zhang, H.; Xia, Z. M.; Guo, P. J.; Liu,R.; Lu, G. E.; Jiang, J. Y. Thermochimica Acta 2004, 416 (1-2),47. doi: 10.1016/j.tca.2003.11.029

    11. [11]

      (11) Zhao, F. Q.; Guo, P. J.; Hu, R. Z.; Zhang, H.; Xia, Z. M.; Gao,H. X.; Chen, P.; Luo, Y.; Zhang, Z. Z.; Zhou, Y. S.; Zhao, H. A.;Gao, S. L.; Shi, Q. Z.; Lu, G. E.; Jiang, J. Y. Chin. J. Chem.2006, 24 (5), 631. [赵凤起, 郭鹏江, 胡荣祖, 张海, 夏志明,高红旭, 陈沛, 罗阳, 张志忠, 周彦水, 赵宏安, 高胜利,史启祯, 路桂娥, 江劲勇. 化学学报, 2006, 24 (5), 631.]

    12. [12]

      (12) Gao, H. X.; Zhang, H.; Zhao, F. Q.; Hu, R. Z.; Ma, H. X.; Xu,K. Z.; Yi, J. H.; Xu, S. Y.; Gao, Y. Acta Phys. -Chim. Sin. 2008,24 (3), 453. [高红旭, 张海, 赵凤起, 胡荣祖, 马海霞, 徐抗震, 仪建华, 徐司雨, 高茵. 物理化学学报, 2008, 24 (3),453.] doi: 10.3866/PKU.WHXB20080318

    13. [13]

      (13) Ou, X. R.; Zhang, C. M. J. Occu. Saf. Heal. 2005, 15 (2), 159.[欧新荣, 张承明. 劳工安全卫生研究季刊, 2005, 15 (2), 159.]

    14. [14]

      (14) Chen, J. R.; Cheng, S. Y.; Yuan, M. H.; Kossoy, A. A.; Shu, C.M. J. Therm. Anal. Calorim. 2009, 96 (3), 751. doi: 10.1007/s10973-009-0023-6

    15. [15]

      (15) Tanaka, G.;Weatherford, C. Int. J. Quantum Chem. 2008, 108 (15), 2924. doi: 10.1002/qua.v108:15

    16. [16]

      (16) nzalez, A. C.; Lamon, C.W.; McMillen, D. F.; lden, D. M.J. Phys. Chem. 1985, 89 (22), 4809. doi: 10.1021/j100268a030

    17. [17]

      (17) Neri, G.; Musolino, M. G.; Milone, C.; Pietropaolo, D.; Galvagno,S. Applied Catalysis A: General 2001, 208 (1), 307. doi: 10.1016/S0926-860X(00)00717-1

    18. [18]

      (18) Lenz, A.; Pohl, A.; Ojamae, L.; Persson, P. Int. J. QuantumChem. 2012, 112 (7), 1852. doi: 10.1002/qua.v112.7

    19. [19]

      (19) Dontsova, K. M.; Pennington, J. C.; Hayes, C.; Šimunek, J.;Williford, C.W. Chemosphere 2009, 77 (4), 597. doi: 10.1016/j.chemosphere.2009.05.039

    20. [20]

      (20) Wang, S. X.; Tan, Z. C.; Shi, Q.; Di, Y. Y.; Zhang, H. T.; Xu, F.;Sun, L. X.; Zhang, T. J. Chem. Thermodynamics 2005, 37 (4),349. doi: 10.1016/j.jct.2004.09.018

    21. [21]

      (21) Zeman, S. Thermochimica Acta 1997, 290 (2), 199. doi: 10.1016/S0040-6031(96)03078-X

    22. [22]

      (22) Chervina, S.; Bodman, G. T. Process Saf. Prog. 2002, 16 (2), 94

    23. [23]

      (23) Bou-Diab, L.; Fierz, H. J. Hazard. Mater. 2002, 93 (1), 137. doi: 10.1016/S0304-3894(02)00044-4

    24. [24]

      (24) Hu, R. Z.; Gao, S. L.; Zhao, F. Q.; Shi, Q. Z.; Zhang, T. L.;Zhang, J. J. Thermal Analysis Kinetics, 2nd ed.; Science Press:Beijing, 2008; pp 149-165. [胡荣祖, 高胜利, 赵凤起, 史启祯, 张同来, 张建军. 热分析动力学(第二版). 北京: 科学出版社, 2008: 149-165.]

    25. [25]

      (25) Tang, Z.; Ren, Y.; Yang, L.; Zhang, T. L.; Qiao, X. J.; Zhang, J.G.; Zhou, Z. N. Chin. J. Explo. Prop. 2011, 34 (1), 19.[汤崭, 任雁, 杨利, 张同来, 乔小晶, 张建国, 周遵宁.火炸药学报, 2011, 34 (1), 19.]

    26. [26]

      (26) Zhou, H. J.; Yin, G. Q.; Huang, D. Y.; Li, C. J.; Guo, Q. B.Insulating Materials 2011, 44 (6), 48. [周红军, 尹国强,黄东莹, 李翠金, 郭清兵. 绝缘材料, 2011, 44 (6), 48.]

    27. [27]

      (27) Sun,W. B.; Zhang, C. C. J. Wuhan Univ. Tech. 2009, 31 (6),28. [孙文兵, 张超灿. 武汉理工大学学报, 2009, 31 (6), 28.]


  • 加载中
    1. [1]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    2. [2]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    3. [3]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    4. [4]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    5. [5]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    6. [6]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    7. [7]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    8. [8]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    9. [9]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    10. [10]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    11. [11]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    12. [12]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    13. [13]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    14. [14]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    15. [15]

      Zhao Lu Hu Lv Qinzhuang Liu Zhongliao Wang . Modulating NH2 Lewis Basicity in CTF-NH2 through Donor-Acceptor Groups for Optimizing Photocatalytic Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(12): 2405005-. doi: 10.3866/PKU.WHXB202405005

    16. [16]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    17. [17]

      Ruming Yuan Pingping Wu Laiying Zhang Xiaoming Xu Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057

    18. [18]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    19. [19]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    20. [20]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

Metrics
  • PDF Downloads(1129)
  • Abstract views(939)
  • HTML views(9)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return