Citation: LIU Yong-Li, LIU Huan, LI Wei, ZHAO Qian, QI Yang. Effect of Substrate Temperature on the Growth and Microstructure of ZnO Film[J]. Acta Physico-Chimica Sinica, ;2013, 29(03): 631-638. doi: 10.3866/PKU.WHXB201212122 shu

Effect of Substrate Temperature on the Growth and Microstructure of ZnO Film

  • Received Date: 12 September 2012
    Available Online: 12 December 2012

    Fund Project: 教育部中央高校基本科研业务费(N100305001, N110205001, N110105001) (N100305001, N110205001, N110105001)国家自然科学基金(51172040)资助项目 (51172040)

  • Understanding the effect of temperature on the orientation, microstructure, integrity, and growth mechanism of ZnO films on the atomic scale is needed to clarify the process of film growth, control deposition conditions, and improve film quality. Using the reaction force field method of molecular dynamics, we theoretically studied the effect of substrate temperature (200, 500, and 800 K) on the quality of ZnO films. Some of our results agree with experimental observations. We found that the radial distribution function curves of the deposited structures were sharp and highly ordered. The thin film formed at 500 K possessed the most stable and ordered structure of those investigated. The film grew with an island mechanism, and two orientations were present on every deposited atomic plane, which led to the formation of a special fault structure at interfacial regions.

  • 加载中
    1. [1]

      (1) Yu, P.; Tang, Z. K.;Wong, G. K. L.; Kawasaki, M.; Ohtomo, A.;Koinuma, H.; Segawa, Y. Solid State Commun. 1997, 103, 459.doi: 10.1016/S0038-1098(97)00216-0

    2. [2]

      (2) Bagnall, D. M.; Chen, Y. F.; Zhu, Z.; Yao, T.; Koyama, S.;Shen, M. Y.; to, T. Appl. Phys. Lett. 1997, 70, 2230. doi: 10.1063/1.118824

    3. [3]

      (3) Wang, J.; Zhuang, H. Z.; Xue, C. S.; Li, J. L.; Xu, P. ActaPhys. -Chim. Sin. 2010, 26, 2840. [王杰, 庄惠照, 薛成山,李俊林, 徐鹏. 物理化学学报, 2010, 26, 2840.] doi: 10.3866/PKU.WHXB20101024

    4. [4]

      (4) Peng, F.; Chen, S. H.; Zhang, L.;Wang, H. J.; Xie, Z. Y. ActaPhys. -Chim. Sin. 2005, 21, 944. [彭峰, 陈水辉, 张雷,王红娟, 谢志勇. 物理化学学报, 2005, 21, 944.] doi: 10.3866/PKU.WHXB20050824

    5. [5]

      (5) Jing, T.; Zheng, J. J.; Xu,W.; Tian, X. C.; Lin, J. H. ActaPhys. -Chim. Sin. 2011, 27, 2613. [汤儆, 郑晶晶, 徐炜,田晓春, 林建航. 物理化学学报, 2011, 27, 2613.] doi: 10.3866/PKU.WHXB20111117

    6. [6]

      (6) Wu, Z. Q.;Wang, B. Film Growth; Beijing Science Press:Beijing, 2001; p 65. [吴自勤, 王兵. 薄膜生长. 北京:北京科学出版社, 2001: 65]

    7. [7]

      (7) Sun, C.W.; Liu, Z.W.; Qin, F.W.; Zhang, Q. Y.; Liu, K.;Wu, S.F. Acta Phys. Sin. 2006, 55, 1390. [孙成伟, 刘志文, 秦福文,张庆瑜, 刘琨, 吴世法. 物理学报, 2006, 55, 1390.]

    8. [8]

      (8) Baguer, N.; Georgieva, V.; Calderin, L.; Ilian, T. T.; Sake, V. G.;Annemie, B. J. Cryst. Growth 2009, 311, 4034. doi: 10.1016/j.jcrysgro.2009.06.034

    9. [9]

      (9) van Duin, A. C. T.; Dasgupta, S.; Lorant, F.; ddard,W. A., III.J. Phys. Chem. A 2001, 105, 9396. doi: 10.1021/jp004368u

    10. [10]

      (10) van Duin, A. C. T.; Strachan, A.; Stewman, S.; Zhang, Q.; Xu,X.; ddard,W. A., III. J. Phys. Chem. A 2003, 107, 3803.

    11. [11]

      (11) Tersoff, J. Phys. Rev. Lett. 1988, 61, 2879. doi: 10.1103/PhysRevLett.61.2879

    12. [12]

      (12) Benner, D.W. Phys. Rev. B 1990, 42, 9458.

    13. [13]

      (13) Rappé, A; ddard,W. A., III. J. Phys. Chem. 1991, 95,3358. doi: 10.1021/j100161a070

    14. [14]

      (14) Raymand, D.; van Duin, A. C. T.; Baudin, M.; Hermanssonet,K. Surf. Sci. 2008, 602, 1020. doi: 10.1016/j.susc.2007.12.023

    15. [15]

      (15) Gale, J. D.; Raiteri, P.; van Duin, A. C. T. Phys. Chem. Chem.Phys. 2011, 13, 16666.

    16. [16]

      (16) Garcia, A. P.; Sen, D.; Buehler, M. J.; Metall. Mater. Trans. A2011, 42, 3889. doi: 10.1007/s11661-010-0477-y

    17. [17]

      (17) Garcia1, A. P.; Pugno, N.; Buehler, M. J. Adv. Eng. Mater. 2011,13, B405.

    18. [18]

      (18) Lee, E. K.; Choi, H.; Chung, Y. C. J. Nanosci. Nanotechno.2011, 11, 10595. doi: 10.1166/jnn.2011.4063

    19. [19]

      (19) Wagner, M. R.; Bartel, T. P.; Kirste, R.; Hoffmann, A.; Sann, J.;Lautenschläger, S.; Meyer, B. K.; Kieselowski, C. Phys. Rev. B2009, 79, 035307. doi: 10.1103/PhysRevB.79.035307

    20. [20]

      (20) Plimpton, S. J. J. Comput. Phys. 1995, 117, 1 doi: 10.1006/jcph.1995.1039

    21. [21]

      (21) Yao, Y. B. Handbook of Physics and Chemistry; ShanghaiScience Press: Shanghai, 1985. [姚允斌. 物理化学手册.上海: 上海科学技术出版社, 1985.]

    22. [22]

      (22) Kim, K. S.; Kim, H.W.; Lee, C. M. Mater. Sci. Eng. B 2003,98, 135. doi: 10.1016/S0921-5107(02)00754-7

    23. [23]

      (23) Chiang, T. Y.; Daia, C. L.; Lian, D. M. J. Alloy. Compd. 2011,509, 5623. doi: 10.1016/j.jallcom.2011.02.093

    24. [24]

      (24) Wang, J. H.; Qi, Y.; Zhi, Z. Z.; Guo, J.; Li, M. L.; Zhang, Y.Smart Mater. Struct. 2007, 16, 2673. doi: 10.1088/0964-1726/16/6/072

    25. [25]

      (25) Kubo, M.; Oumi, Y.; Takaba, H.; Chatterjee, A.; Miyamoto, A.Phys. Rev. B 2000, 61, 16187. doi: 10.1103/PhysRevB.61.16187


  • 加载中
    1. [1]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    2. [2]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    3. [3]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    4. [4]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    5. [5]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    6. [6]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    7. [7]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    8. [8]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    9. [9]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    10. [10]

      Jie RenHao ZongYaqun HanTianyi LiuShufen ZhangQiang XuSuli Wu . Visual identification of silver ornament by the structural color based on Mie scattering of ZnO spheres. Chinese Chemical Letters, 2024, 35(9): 109350-. doi: 10.1016/j.cclet.2023.109350

    11. [11]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    12. [12]

      Hongyun Liu Jiarun Li Xinyi Li Zhe Liu Jiaxuan Li Cong Xiao . Course Ideological and Political Design of a Comprehensive Chemistry Experiment: Constructing a Visual Molecular Logic System Based on Intelligent Hydrogel Film Electrodes. University Chemistry, 2024, 39(2): 227-233. doi: 10.3866/PKU.DXHX202309070

    13. [13]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    14. [14]

      Hongwei Ma Hui Li . Three Methods for Structure Determination from Powder Diffraction Data. University Chemistry, 2024, 39(3): 94-102. doi: 10.3866/PKU.DXHX202310035

    15. [15]

      Lijuan Wang Yuping Ning Jian Li Sha Luo Xiongfei Luo Ruiwen Wang . Enhancing the Advanced Nature of Natural Product Chemistry Laboratory Courses with New Research Findings: A Case Study of the Application of Berberine Hydrochloride in Photodynamic Antimicrobial Films. University Chemistry, 2024, 39(11): 241-250. doi: 10.12461/PKU.DXHX202403017

    16. [16]

      Xiuzheng DengYi KeJiawen DingYingtang ZhouHui HuangQian LiangZhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064

    17. [17]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    18. [18]

      Haiping Wang . A Streamlined Method for Drawing Lewis Structures Using the Valence State of Outer Atoms. University Chemistry, 2024, 39(8): 383-388. doi: 10.12461/PKU.DXHX202401073

    19. [19]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    20. [20]

      Wenliang Wang Weina Wang Sufan Wang Tian Sheng Tao Zhou Nan Wei . “Schrödinger Equation – Approximate Models – Core Concepts – Simple Applications”: Constructing a Logical Framework and Knowledge Graph of Atom and Molecule Structures. University Chemistry, 2024, 39(8): 338-343. doi: 10.3866/PKU.DXHX202312084

Metrics
  • PDF Downloads(937)
  • Abstract views(1071)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return