Citation: YANG Ji-Liang, ZHOU Jian-Bin. Adsorption of Nicotine from Aqueous Solution by Activated Carbons Prepared from Chinese Fir Sawdust[J]. Acta Physico-Chimica Sinica, ;2013, 29(02): 377-384. doi: 10.3866/PKU.WHXB201212101 shu

Adsorption of Nicotine from Aqueous Solution by Activated Carbons Prepared from Chinese Fir Sawdust

  • Received Date: 13 August 2012
    Available Online: 10 December 2012

    Fund Project: 南京林业大学优秀博士学位论文创新基金项目(2011YB005) (2011YB005) 林业科学推广项目(2010-34) (2010-34)2011 年度高校科研成果产业化推进项目(JHB2011-11)资助 (JHB2011-11)

  • Adsorption of nicotine from aqueous solution by activated carbons with different pore sizes and chemical properties was studied. Activated carbons were prepared from Chinese fir sawdust by chemical activation with zinc chloride (called AC-Z) or physical activation with steam (called AC-H). The properties of the samples were compared with those of a commercial coconut-based activated carbon, named AC-C. The surface area and pore structure of the samples were determined by a surface area and porosity analyzer, and surface oxygen groups were characterized by Boehm titration. Adsorption experiments were performed under varying contact time, initial concentration, and temperature. The experimental data suggested that micropores, acidic groups, and the metal atoms play important roles in adsorption of nicotine. The different effects of temperature on the three samples also explain the role of the activated sites. The amount of nicotine adsorbed by AC-Z, which contained more activated sites than the other samples, first increased and then decreased with increasing temperature. This is because increased temperature accelerated the decomposition of nicotine molecules and their conjugation with activated sites, but if it became too high, the probability and strength of molecular collisions increased, causing adsorbed molecules to dissociate from activated sites. AC-H and AC-C, which both contained micropores and activated sites, showed different performance. Nicotine was physically adsorbed first: the surface oxygen groups bonded to nicotine molecules, which blocked the micropores of the adsorbents. Pseudofirst order, pseudo-second order, and intraparticle diffusion kinetic models were used to interpret the adsorption mechanism. Kinetic studies showed adsorption of nicotine was rapid and followed a pseudosecond order model. Thermodynamic parameters ΔG0, ΔH0 and ΔS0 were also calculated to predict the nature of adsorption, and indicated that adsorption was endothermic and spontaneous. The low ΔH0 values of AC-Z and AC-H show that nicotine molecules interacted strongly with activated sites, so they require less isosteric heat to adsorb the same amount of nicotine as AC-C, and also indicate that the activated sites play a role in adsorption.

  • 加载中
    1. [1]

      (1) Rakic, V.; Damjanovic, L.; Rac, V.; Stošic, D.; Dondur, V.;Auroux, A. Water Res. 2010, 44, 2047. doi: 10.1016/j.watres.2009.12.019

    2. [2]

      (2) Adnadjevic, B.; Lazarevic, N.; Jovanovic, J. Appl. Surf. Sci.2010, 257, 1425. doi: 10.1016/j.apsusc.2010.08.055

    3. [3]

      (3) Chen, Z.; Zhang, L.; Tang, Y.; Jia, Z. Appl. Surf. Sci. 2006, 252,2933. doi: 10.1016/j.apsusc.2005.04.044

    4. [4]

      (4) Sheridan, R. P.; Nilakantan, R.; Dixon, J. S.; Venkatarghavan, R.Med. Chem. 1986, 29, 899. doi: 10.1021/jm00156a005

    5. [5]

      (5) Akcay, G.; Yurdakoc, K. J. Sci. Ind. Res. 2008, 67, 451.

    6. [6]

      (6) Lazarevic, N.; Adnadjevic, B.; Jovanovic, J. Appl. Surf. Sci.2011, 257, 8017. doi: 10.1016/j.apsusc.2011.04.076

    7. [7]

      (7) Shin, J. H.; Park, S. S.; Ha, C. S. Colloids Surf B: Biointerfaces2011, 84, 579. doi: 10.1016/j.colsurfb.2011.02.022

    8. [8]

      (8) Kowalczyk, P.; Ciach, A.; Neimark, A. V. Langmuir 2008, 24,6603. doi: 10.1021/la800406c

    9. [9]

      (9) Dural, M. U.; Cavas, L.; Papageorgiou, S. K.; Katsaros, F. K.Chem. Eng. J. 2011, 168, 77. doi: 10.1016/j.cej.2010.12.038

    10. [10]

      (10) Demiral, H.; Demiral, I.; Karabacakolu, B.; Tümsek, F. Chem. Eng. Res. Des. 2011, 89, 206. doi: 10.1016/j.cherd.2010.05.005

    11. [11]

      (11) Nowicki, P.;Wachowska, H.; Pietrzak, R. J. Hazard. Mater.2010, 181, 1088. doi: 10.1016/j.jhazmat.2010.05.126

    12. [12]

      (12) Ip, A.W. M.; Barford, J. P.; McKay, G. Bioresour. Technol.2008, 99, 8909. doi: 10.1016/j.biortech.2008.04.076

    13. [13]

      (13) Tang, L.; Zhan, L.; Yang, G. Z.; Yang, J. H.;Wang, Y. L.; Qiao,W. M.; Ling L. C. New Carbon Mater. 2011, 26, 237. doi: 10.1016/S1872-5805(11)60079-6

    14. [14]

      (14) Zhao, Z.; Li, X.; Li, Z. Chem. Eng. J. 2011, 173, 150. doi: 10.1016/j.cej.2011.07.051

    15. [15]

      (15) Bulut, Y.; Aydin, H. Desalination 2006, 194, 259. doi: 10.1016/j.desal.2005.10.032

    16. [16]

      (16) Kilic, M.; Apaydin-Varol, E.; Pütün, A. E. J. Hazard. Mater.2011, 189, 397. doi: 10.1016/j.jhazmat.2011.02.051

    17. [17]

      (17) Fernandes, A. N.; Almeida, C. A. P.; Menezes, C. T. B.; Debacher,N. A.; Sierra, M. M. D. J. Hazard. Mater. 2007, 144, 412. doi: 10.1016/j.jhazmat.2006.10.053

    18. [18]

      (18) Ahmad, A. L.; Chan, C. Y.; Abd Shukor, S. R.; Mashitah, M. D.Chem. Eng. J. 2009, 148, 378. doi: 10.1016/j.cej.2008.09.011

    19. [19]

      (19) Wu, Z.; Joo, H.; Lee, K. Chem. Eng. J. 2005, 112, 227. doi: 10.1016/j.cej.2005.07.011

    20. [20]

      (20) Barka, N.; Abdennouri, M.; Makhfouk, M. E. J. Taiwan Inst. Chem. E 2011, 42, 320. doi: 10.1016/j.jtice.2010.07.004

    21. [21]

      (21) Hameed, B. H.; Ahmad, A. A.; Aziz, N. Chem. Eng. J. 2007,133, 195. doi: 10.1016/j.cej.2007.01.032

    22. [22]

      (22) Zhou, L. C.; Meng, X. G.; Li, J. M.; Hu,W.; Liu, B.; Du, J. Acta Phys. -Chim. Sin. 2012, 28, 1615. [周良春, 孟祥光, 李建梅,胡伟, 刘波, 杜娟. 物理化学学报, 2012, 28, 1615.] doi: 10.3866/PKU.WHXB201204282

    23. [23]

      (23) Ucuna, H.; Bayhan, Y. K.; Kaya, Y. J. Hazard. Mater. 2008, 153,52. doi: 10.1016/j.jhazmat.2007.08.018

    24. [24]

      (24) Lin, K.; Pan, J.; Chen, Y.; Cheng, R.; Xu, X. J. Hazard. Mater.2009, 161, 231. doi: 10.1016/j.jhazmat.2008.03.076

    25. [25]

      (25) Zhang, J.; Fu, H.; Lv, X.; Tang, J.; Xu, X. Biomass Bioenergy2011, 35, 464. doi: 10.1016/j.biombioe.2010.09.002

    26. [26]

      (26) Sharma, P.; Kaur, R.; Baskar, C.; Chung,W. J. Desalination2010, 259, 249. doi: 10.1016/j.desal.2010.03.044

    27. [27]

      (27) Wang, S.; Zhu, Z. H. Dyes Pigments 2007, 75, 306. doi: 10.1016/j.dyepig.2006.06.005

    28. [28]

      (28) Kavitha, D.; Namasivayam, C. Bioresour. Technol. 2007, 98, 14.doi: 10.1016/j.biortech.2005.12.008

    29. [29]

      (29) Barton, S. S. Carbon 1987, 25, 343. doi: 10.1016/0008-6223(87)90005-4

    30. [30]

      (30) Zhao, X.; Zhang, G.; Jia, Q.; Zhao, C.; Zhou,W.; Li,W. Chem. Eng. J. 2011, 171, 152. doi: 10.1016/j.cej.2011.03.080


  • 加载中
    1. [1]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    2. [2]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    3. [3]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    4. [4]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    5. [5]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    6. [6]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    7. [7]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    8. [8]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    9. [9]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    10. [10]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    11. [11]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    12. [12]

      Jing JINZhuming GUOZhiyin XIAOXiujuan JIANGYi HEXiaoming LIU . Tuning the stability and cytotoxicity of fac-[Fe(CO)3I3]- anion by its counter ions: From aminiums to inorganic cations. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 991-1004. doi: 10.11862/CJIC.20230458

    13. [13]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    14. [14]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    15. [15]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    16. [16]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    17. [17]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    18. [18]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    19. [19]

      Shasha Ma Zujin Yang Jianyong Zhang . Facile Synthesis of FeBTC Metal-Organic Gel and Its Adsorption of Cr2O72−: A Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(8): 314-323. doi: 10.3866/PKU.DXHX202401008

    20. [20]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

Metrics
  • PDF Downloads(667)
  • Abstract views(1509)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return