Citation: YANG Ji-Liang, ZHOU Jian-Bin. Adsorption of Nicotine from Aqueous Solution by Activated Carbons Prepared from Chinese Fir Sawdust[J]. Acta Physico-Chimica Sinica, ;2013, 29(02): 377-384. doi: 10.3866/PKU.WHXB201212101
-
Adsorption of nicotine from aqueous solution by activated carbons with different pore sizes and chemical properties was studied. Activated carbons were prepared from Chinese fir sawdust by chemical activation with zinc chloride (called AC-Z) or physical activation with steam (called AC-H). The properties of the samples were compared with those of a commercial coconut-based activated carbon, named AC-C. The surface area and pore structure of the samples were determined by a surface area and porosity analyzer, and surface oxygen groups were characterized by Boehm titration. Adsorption experiments were performed under varying contact time, initial concentration, and temperature. The experimental data suggested that micropores, acidic groups, and the metal atoms play important roles in adsorption of nicotine. The different effects of temperature on the three samples also explain the role of the activated sites. The amount of nicotine adsorbed by AC-Z, which contained more activated sites than the other samples, first increased and then decreased with increasing temperature. This is because increased temperature accelerated the decomposition of nicotine molecules and their conjugation with activated sites, but if it became too high, the probability and strength of molecular collisions increased, causing adsorbed molecules to dissociate from activated sites. AC-H and AC-C, which both contained micropores and activated sites, showed different performance. Nicotine was physically adsorbed first: the surface oxygen groups bonded to nicotine molecules, which blocked the micropores of the adsorbents. Pseudofirst order, pseudo-second order, and intraparticle diffusion kinetic models were used to interpret the adsorption mechanism. Kinetic studies showed adsorption of nicotine was rapid and followed a pseudosecond order model. Thermodynamic parameters ΔG0, ΔH0 and ΔS0 were also calculated to predict the nature of adsorption, and indicated that adsorption was endothermic and spontaneous. The low ΔH0 values of AC-Z and AC-H show that nicotine molecules interacted strongly with activated sites, so they require less isosteric heat to adsorb the same amount of nicotine as AC-C, and also indicate that the activated sites play a role in adsorption.
-
Keywords:
-
Nicotine
, - Adsorption,
- Pore size,
- Chemical character,
- Kinetics
-
-
-
[1]
(1) Rakic, V.; Damjanovic, L.; Rac, V.; Stošic, D.; Dondur, V.;Auroux, A. Water Res. 2010, 44, 2047. doi: 10.1016/j.watres.2009.12.019
-
[2]
(2) Adnadjevic, B.; Lazarevic, N.; Jovanovic, J. Appl. Surf. Sci.2010, 257, 1425. doi: 10.1016/j.apsusc.2010.08.055
-
[3]
(3) Chen, Z.; Zhang, L.; Tang, Y.; Jia, Z. Appl. Surf. Sci. 2006, 252,2933. doi: 10.1016/j.apsusc.2005.04.044
-
[4]
(4) Sheridan, R. P.; Nilakantan, R.; Dixon, J. S.; Venkatarghavan, R.Med. Chem. 1986, 29, 899. doi: 10.1021/jm00156a005
-
[5]
(5) Akcay, G.; Yurdakoc, K. J. Sci. Ind. Res. 2008, 67, 451.
-
[6]
(6) Lazarevic, N.; Adnadjevic, B.; Jovanovic, J. Appl. Surf. Sci.2011, 257, 8017. doi: 10.1016/j.apsusc.2011.04.076
-
[7]
(7) Shin, J. H.; Park, S. S.; Ha, C. S. Colloids Surf B: Biointerfaces2011, 84, 579. doi: 10.1016/j.colsurfb.2011.02.022
-
[8]
(8) Kowalczyk, P.; Ciach, A.; Neimark, A. V. Langmuir 2008, 24,6603. doi: 10.1021/la800406c
-
[9]
(9) Dural, M. U.; Cavas, L.; Papageorgiou, S. K.; Katsaros, F. K.Chem. Eng. J. 2011, 168, 77. doi: 10.1016/j.cej.2010.12.038
-
[10]
(10) Demiral, H.; Demiral, I.; Karabacakolu, B.; Tümsek, F. Chem. Eng. Res. Des. 2011, 89, 206. doi: 10.1016/j.cherd.2010.05.005
-
[11]
(11) Nowicki, P.;Wachowska, H.; Pietrzak, R. J. Hazard. Mater.2010, 181, 1088. doi: 10.1016/j.jhazmat.2010.05.126
-
[12]
(12) Ip, A.W. M.; Barford, J. P.; McKay, G. Bioresour. Technol.2008, 99, 8909. doi: 10.1016/j.biortech.2008.04.076
-
[13]
(13) Tang, L.; Zhan, L.; Yang, G. Z.; Yang, J. H.;Wang, Y. L.; Qiao,W. M.; Ling L. C. New Carbon Mater. 2011, 26, 237. doi: 10.1016/S1872-5805(11)60079-6
-
[14]
(14) Zhao, Z.; Li, X.; Li, Z. Chem. Eng. J. 2011, 173, 150. doi: 10.1016/j.cej.2011.07.051
-
[15]
(15) Bulut, Y.; Aydin, H. Desalination 2006, 194, 259. doi: 10.1016/j.desal.2005.10.032
-
[16]
(16) Kilic, M.; Apaydin-Varol, E.; Pütün, A. E. J. Hazard. Mater.2011, 189, 397. doi: 10.1016/j.jhazmat.2011.02.051
-
[17]
(17) Fernandes, A. N.; Almeida, C. A. P.; Menezes, C. T. B.; Debacher,N. A.; Sierra, M. M. D. J. Hazard. Mater. 2007, 144, 412. doi: 10.1016/j.jhazmat.2006.10.053
-
[18]
(18) Ahmad, A. L.; Chan, C. Y.; Abd Shukor, S. R.; Mashitah, M. D.Chem. Eng. J. 2009, 148, 378. doi: 10.1016/j.cej.2008.09.011
-
[19]
(19) Wu, Z.; Joo, H.; Lee, K. Chem. Eng. J. 2005, 112, 227. doi: 10.1016/j.cej.2005.07.011
-
[20]
(20) Barka, N.; Abdennouri, M.; Makhfouk, M. E. J. Taiwan Inst. Chem. E 2011, 42, 320. doi: 10.1016/j.jtice.2010.07.004
-
[21]
(21) Hameed, B. H.; Ahmad, A. A.; Aziz, N. Chem. Eng. J. 2007,133, 195. doi: 10.1016/j.cej.2007.01.032
-
[22]
(22) Zhou, L. C.; Meng, X. G.; Li, J. M.; Hu,W.; Liu, B.; Du, J. Acta Phys. -Chim. Sin. 2012, 28, 1615. [周良春, 孟祥光, 李建梅,胡伟, 刘波, 杜娟. 物理化学学报, 2012, 28, 1615.] doi: 10.3866/PKU.WHXB201204282
-
[23]
(23) Ucuna, H.; Bayhan, Y. K.; Kaya, Y. J. Hazard. Mater. 2008, 153,52. doi: 10.1016/j.jhazmat.2007.08.018
-
[24]
(24) Lin, K.; Pan, J.; Chen, Y.; Cheng, R.; Xu, X. J. Hazard. Mater.2009, 161, 231. doi: 10.1016/j.jhazmat.2008.03.076
-
[25]
(25) Zhang, J.; Fu, H.; Lv, X.; Tang, J.; Xu, X. Biomass Bioenergy2011, 35, 464. doi: 10.1016/j.biombioe.2010.09.002
-
[26]
(26) Sharma, P.; Kaur, R.; Baskar, C.; Chung,W. J. Desalination2010, 259, 249. doi: 10.1016/j.desal.2010.03.044
-
[27]
(27) Wang, S.; Zhu, Z. H. Dyes Pigments 2007, 75, 306. doi: 10.1016/j.dyepig.2006.06.005
-
[28]
(28) Kavitha, D.; Namasivayam, C. Bioresour. Technol. 2007, 98, 14.doi: 10.1016/j.biortech.2005.12.008
-
[29]
(29) Barton, S. S. Carbon 1987, 25, 343. doi: 10.1016/0008-6223(87)90005-4
-
[30]
(30) Zhao, X.; Zhang, G.; Jia, Q.; Zhao, C.; Zhou,W.; Li,W. Chem. Eng. J. 2011, 171, 152. doi: 10.1016/j.cej.2011.03.080
-
[1]
-
-
[1]
Guang Huang , Lei Li , Dingyi Zhang , Xingze Wang , Yugai Huang , Wenhui Liang , Zhifen Guo , Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051
-
[2]
Jingke LIU , Jia CHEN , Yingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060
-
[3]
Peng XU , Shasha WANG , Nannan CHEN , Ao WANG , Dongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239
-
[4]
Zeyu XU , Anlei DANG , Bihua DENG , Xiaoxin ZUO , Yu LU , Ping YANG , Wenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099
-
[5]
Jing Wang , Pingping Li , Yuehui Wang , Yifan Xiu , Bingqian Zhang , Shuwen Wang , Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097
-
[6]
Jinfu Ma , Hui Lu , Jiandong Wu , Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052
-
[7]
Yeyun Zhang , Ling Fan , Yanmei Wang , Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044
-
[8]
Dexin Tan , Limin Liang , Baoyi Lv , Huiwen Guan , Haicheng Chen , Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048
-
[9]
Xuzhen Wang , Xinkui Wang , Dongxu Tian , Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074
-
[10]
Yiying Yang , Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074
-
[11]
Yue Wu , Jun Li , Bo Zhang , Yan Yang , Haibo Li , Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028
-
[12]
Jing JIN , Zhuming GUO , Zhiyin XIAO , Xiujuan JIANG , Yi HE , Xiaoming LIU . Tuning the stability and cytotoxicity of fac-[Fe(CO)3I3]- anion by its counter ions: From aminiums to inorganic cations. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 991-1004. doi: 10.11862/CJIC.20230458
-
[13]
Yan Li , Xinze Wang , Xue Yao , Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene E→Z Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053
-
[14]
Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047
-
[15]
Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029
-
[16]
Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093
-
[17]
Shuanglin TIAN , Tinghong GAO , Yutao LIU , Qian CHEN , Quan XIE , Qingquan XIAO , Yongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482
-
[18]
You Wu , Chang Cheng , Kezhen Qi , Bei Cheng , Jianjun Zhang , Jiaguo Yu , Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027
-
[19]
Shasha Ma , Zujin Yang , Jianyong Zhang . Facile Synthesis of FeBTC Metal-Organic Gel and Its Adsorption of Cr2O72−: A Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(8): 314-323. doi: 10.3866/PKU.DXHX202401008
-
[20]
Xiaosong PU , Hangkai WU , Taohong LI , Huijuan LI , Shouqing LIU , Yuanbo HUANG , Xuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030
-
[1]
Metrics
- PDF Downloads(667)
- Abstract views(1509)
- HTML views(1)