Citation: QIU Yi-Xiang, WAN Ming-Da, CHEN Xian-Yang, WANG Shu-Guang. Reaction Mechanisms of Ethylene Hydrogenation Catalyzed by ld(I) Complexes[J]. Acta Physico-Chimica Sinica, ;2013, 29(02): 279-286. doi: 10.3866/PKU.WHXB201212061 shu

Reaction Mechanisms of Ethylene Hydrogenation Catalyzed by ld(I) Complexes

  • Received Date: 27 June 2012
    Available Online: 6 December 2012

    Fund Project: 国家自然科学基金(20973109) (20973109) 国家大学生创新性实验计划(S110ITP5009) (S110ITP5009)上海交通大学大学生创新实践计划(IPP6123, IPP6128)资助项目 (IPP6123, IPP6128)

  • The reaction mechanisms of ethylene hydrogenation catalyzed by Au(I) complexes AuX (X=F, Cl, Br, I) and AuPR3+ (R = F, Cl, Br, I, H, Me, Ph) were investigated using density functional theory at the B3LYP level. The calculated results indicated that Au(I) complexes were effective catalysts in the hydrogenation of ethylene. AuPR3+ showed higher catalytic activity than AuX and the effect of changing the electron donating or withdrawing ability of the ligand on catalytic activity was large. Natural bond orbital analysis indicated that the interactions between the Au(I) complex and H2/C2H4 not only weakened the H― H/C=C bond strength, but also decreased the energy of the σH―H*πC=C* orbital level. As a result, the energy differences of πC=CH―H*H―H-πC=C* decreased, and ethylene hydrogenation was facilitated. A linear correlation was observed between the activation energies and πC=CH―H*H―H-πC=C*. The more an Au(I) complex affected the σH―H*/πC=C* orbital levels, the higher its catalytic activity.

  • 加载中
    1. [1]

      (1) Fuerstner, A.; Davies, P.W. Angew. Chem. Int. Edit. 2007, 46,3410.

    2. [2]

      (2) Alcarazo, M.; Stork, T.; Anoop, A.; Thiel,W.; Fürstner, A.Angew. Chem. Int. Edit. 2010, 49, 2542. doi: 10.1002/anie.v49:14

    3. [3]

      (3) Correa, A.; Nolan, S. P.; Cavallo, L. Top. Curr. Chem. 2011,302, 131. doi: 10.1007/978-3-642-21083-9

    4. [4]

      (4) Young, J. F.; Osborne, J. A.; Jardine, F. A.;Wilkinson, G. Chem. Commun. 1965, 131.

    5. [5]

      (5) Osborn, J. A.; Powell, A. R.;Wilkinson, G. Chem. Commun.1966, 461.

    6. [6]

      (6) Johnson, L. K.; Killian, C. M.; Brookhart, M. J. Am. Chem. Soc.1995, 117, 6414. doi: 10.1021/ja00128a054

    7. [7]

      (7) Drent, E.; Budzelaar, P. H. M. Chem. Rev. 1996, 96, 663.

    8. [8]

      (8) Nolan, S. P. Accounts Chem. Res. 2011, 44, 91. doi: 10.1021/ar1000764

    9. [9]

      (9) Krause, N.;Winter, C. Chem. Rev. 2011, 111, 1994. doi: 10.1021/cr1004088

    10. [10]

      (10) nzalez-Arellano, C.; Corma, A.; Iglesias, M.; Sanchez, F.Chem. Commun. 2005, 3451.

    11. [11]

      (11) Xue,W. J.; Zhang, X. Y.; Li, P.; Liu, Z. T.; Hao, Z. P.; Ma, C. Y.Acta Phys. -Chim. Sin. 2011, 27, 1730. [薛雯娟, 张新艳,李鹏, 刘昭铁, 郝郑平, 麻春艳. 物理化学学报, 2011, 27,1730.] doi: 10.3866/PKU.WHXB20110719

    12. [12]

      (12) Correa, A.; Marion, N.; Fensterbank, L.; Malacria, M.; Nolan,S.; Cavallo, L. Angew. Chem. Int. Edit. 2008, 47, 718.

    13. [13]

      (13) Frenking, G.; Frölich, N. Chem. Rev. 2000, 100, 717. doi: 10.1021/cr980401l

    14. [14]

      (14) Schmidbaur, H.; Schier, A. Organometallics 2010, 29, 2. doi: 10.1021/om900900u

    15. [15]

      (15) Qiu, Y. X.;WANG, S. G. Chem. J. Chin. Univ. 2012, 33,2549. [仇毅翔, 王曙光. 高等学校化学学报, 2012, 33, 2549.]

    16. [16]

      (16) Qiu, Y. X.;WANG, S. G. Acta Phys. -Chim. Sin. 2012, 28,811. [仇毅翔, 王曙光. 物理化学学报, 2012, 28, 811.] doi: 10.3866/PKU.WHXB201202082

    17. [17]

      (17) Birkenstock, U.; Holm, R.; Reinfandt, B.; Storp, S. J. Catal.1985, 93, 55. doi: 10.1016/0021-9517(85)90150-2

    18. [18]

      (18) Crabtree, R. Acc. Chem. Res. 1979, 12, 331. doi: 10.1021/ar50141a005

    19. [19]

      (19) Glukhovtsev, M. N.; Pross, A.; McGrath, M. P.; Radom, L.J. Chem. Phys. 1995, 103, 1878. doi: 10.1063/1.469712

    20. [20]

      (20) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 03,Revision A.01; Gaussian Inc.: Pittsburgh, PA, 2003.

    21. [21]

      (21) Glendening, E. D.; Reed, A. E.; Carpenter, J. E.;Weinhold, F.NBO Version 3.1; Theoretical Chemistry Institute, University ofWisconsin: Madison, 1996.

    22. [22]

      (22) March, J. Advanced Organic Chemistry;Wiley: New York, 1992.

    23. [23]

      (23) Dewar, M. J. S. Bull. Soc. Chim. Fr. 1951, 18, C71.

    24. [24]

      (24) Chatt, J.; Duncanson, L. A. J. Chem. Soc. 1953, 2939.

    25. [25]

      (25) Weinhold, F.; Landis, C. R. Valency and Bonding: a Natural Bond Orbital Donor-Accpetor Perspective; CambridgeUniversity Press: Cambridge, 2005.

    26. [26]

      (26) Dias, H. V. R.;Wu, J. Eur. J. Inorg. Chem. 2008, 509.

    27. [27]

      (27) Nechaev, M. S.; Rayon, V. M.; Frenking, G. J. Phys. Chem. A2004, 108, 3134. doi: 10.1021/jp031185+


  • 加载中
    1. [1]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    2. [2]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    3. [3]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    4. [4]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    5. [5]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    6. [6]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    7. [7]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    8. [8]

      Jiabo Huang Quanxin Li Zhongyan Cao Li Dang Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172

    9. [9]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    10. [10]

      Qian Huang Zhaowei Li Jianing Zhao Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018

    11. [11]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    12. [12]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    13. [13]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    14. [14]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    15. [15]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    16. [16]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    17. [17]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    18. [18]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    19. [19]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    20. [20]

      Shenhao QIUQingquan XIAOHuazhu TANGQuan XIE . First-principles study on electronic structure, optical and magnetic properties of rare earth elements X (X=Sc, Y, La, Ce, Eu) doped with two-dimensional GaSe. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2250-2258. doi: 10.11862/CJIC.20240104

Metrics
  • PDF Downloads(644)
  • Abstract views(1818)
  • HTML views(104)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return