Citation:
QIU Yi-Xiang, WAN Ming-Da, CHEN Xian-Yang, WANG Shu-Guang. Reaction Mechanisms of Ethylene Hydrogenation Catalyzed by ld(I) Complexes[J]. Acta Physico-Chimica Sinica,
;2013, 29(02): 279-286.
doi:
10.3866/PKU.WHXB201212061
-
The reaction mechanisms of ethylene hydrogenation catalyzed by Au(I) complexes AuX (X=F, Cl, Br, I) and AuPR3+ (R = F, Cl, Br, I, H, Me, Ph) were investigated using density functional theory at the B3LYP level. The calculated results indicated that Au(I) complexes were effective catalysts in the hydrogenation of ethylene. AuPR3+ showed higher catalytic activity than AuX and the effect of changing the electron donating or withdrawing ability of the ligand on catalytic activity was large. Natural bond orbital analysis indicated that the interactions between the Au(I) complex and H2/C2H4 not only weakened the H― H/C=C bond strength, but also decreased the energy of the σH―H*、πC=C* orbital level. As a result, the energy differences of πC=C-σH―H*/σH―H-πC=C* decreased, and ethylene hydrogenation was facilitated. A linear correlation was observed between the activation energies and πC=C-σH―H*/σH―H-πC=C*. The more an Au(I) complex affected the σH―H*/πC=C* orbital levels, the higher its catalytic activity.
-
-
-
[1]
(1) Fuerstner, A.; Davies, P.W. Angew. Chem. Int. Edit. 2007, 46,3410.
-
[2]
(2) Alcarazo, M.; Stork, T.; Anoop, A.; Thiel,W.; Fürstner, A.Angew. Chem. Int. Edit. 2010, 49, 2542. doi: 10.1002/anie.v49:14
-
[3]
(3) Correa, A.; Nolan, S. P.; Cavallo, L. Top. Curr. Chem. 2011,302, 131. doi: 10.1007/978-3-642-21083-9
-
[4]
(4) Young, J. F.; Osborne, J. A.; Jardine, F. A.;Wilkinson, G. Chem. Commun. 1965, 131.
-
[5]
(5) Osborn, J. A.; Powell, A. R.;Wilkinson, G. Chem. Commun.1966, 461.
-
[6]
(6) Johnson, L. K.; Killian, C. M.; Brookhart, M. J. Am. Chem. Soc.1995, 117, 6414. doi: 10.1021/ja00128a054
-
[7]
(7) Drent, E.; Budzelaar, P. H. M. Chem. Rev. 1996, 96, 663.
-
[8]
(8) Nolan, S. P. Accounts Chem. Res. 2011, 44, 91. doi: 10.1021/ar1000764
-
[9]
(9) Krause, N.;Winter, C. Chem. Rev. 2011, 111, 1994. doi: 10.1021/cr1004088
-
[10]
(10) nzalez-Arellano, C.; Corma, A.; Iglesias, M.; Sanchez, F.Chem. Commun. 2005, 3451.
-
[11]
(11) Xue,W. J.; Zhang, X. Y.; Li, P.; Liu, Z. T.; Hao, Z. P.; Ma, C. Y.Acta Phys. -Chim. Sin. 2011, 27, 1730. [薛雯娟, 张新艳,李鹏, 刘昭铁, 郝郑平, 麻春艳. 物理化学学报, 2011, 27,1730.] doi: 10.3866/PKU.WHXB20110719
-
[12]
(12) Correa, A.; Marion, N.; Fensterbank, L.; Malacria, M.; Nolan,S.; Cavallo, L. Angew. Chem. Int. Edit. 2008, 47, 718.
-
[13]
(13) Frenking, G.; Frölich, N. Chem. Rev. 2000, 100, 717. doi: 10.1021/cr980401l
-
[14]
(14) Schmidbaur, H.; Schier, A. Organometallics 2010, 29, 2. doi: 10.1021/om900900u
-
[15]
(15) Qiu, Y. X.;WANG, S. G. Chem. J. Chin. Univ. 2012, 33,2549. [仇毅翔, 王曙光. 高等学校化学学报, 2012, 33, 2549.]
-
[16]
(16) Qiu, Y. X.;WANG, S. G. Acta Phys. -Chim. Sin. 2012, 28,811. [仇毅翔, 王曙光. 物理化学学报, 2012, 28, 811.] doi: 10.3866/PKU.WHXB201202082
-
[17]
(17) Birkenstock, U.; Holm, R.; Reinfandt, B.; Storp, S. J. Catal.1985, 93, 55. doi: 10.1016/0021-9517(85)90150-2
-
[18]
(18) Crabtree, R. Acc. Chem. Res. 1979, 12, 331. doi: 10.1021/ar50141a005
-
[19]
(19) Glukhovtsev, M. N.; Pross, A.; McGrath, M. P.; Radom, L.J. Chem. Phys. 1995, 103, 1878. doi: 10.1063/1.469712
-
[20]
(20) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 03,Revision A.01; Gaussian Inc.: Pittsburgh, PA, 2003.
-
[21]
(21) Glendening, E. D.; Reed, A. E.; Carpenter, J. E.;Weinhold, F.NBO Version 3.1; Theoretical Chemistry Institute, University ofWisconsin: Madison, 1996.
-
[22]
(22) March, J. Advanced Organic Chemistry;Wiley: New York, 1992.
-
[23]
(23) Dewar, M. J. S. Bull. Soc. Chim. Fr. 1951, 18, C71.
-
[24]
(24) Chatt, J.; Duncanson, L. A. J. Chem. Soc. 1953, 2939.
-
[25]
(25) Weinhold, F.; Landis, C. R. Valency and Bonding: a Natural Bond Orbital Donor-Accpetor Perspective; CambridgeUniversity Press: Cambridge, 2005.
-
[26]
(26) Dias, H. V. R.;Wu, J. Eur. J. Inorg. Chem. 2008, 509.
-
[27]
(27) Nechaev, M. S.; Rayon, V. M.; Frenking, G. J. Phys. Chem. A2004, 108, 3134. doi: 10.1021/jp031185+
-
[1]
-
-
-
[1]
Hao XU , Ruopeng LI , Peixia YANG , Anmin LIU , Jie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302
-
[2]
Mingyang Men , Jinghua Wu , Gaozhan Liu , Jing Zhang , Nini Zhang , Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019
-
[3]
Ronghao Zhao , Yifan Liang , Mengyao Shi , Rongxiu Zhu , Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101
-
[4]
Wentao Lin , Wenfeng Wang , Yaofeng Yuan , Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095
-
[5]
Hongting Yan , Aili Feng , Rongxiu Zhu , Lei Liu , Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010
-
[6]
Aili Feng , Xin Lu , Peng Liu , Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072
-
[7]
Ling Fan , Meili Pang , Yeyun Zhang , Yanmei Wang , Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024
-
[8]
Jiabo Huang , Quanxin Li , Zhongyan Cao , Li Dang , Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172
-
[9]
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210
-
[10]
Qian Huang , Zhaowei Li , Jianing Zhao , Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018
-
[11]
Yong Wang , Yingying Zhao , Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009
-
[12]
Zihan Lin , Wanzhen Lin , Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089
-
[13]
Weina Wang , Lixia Feng , Fengyi Liu , Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022
-
[14]
Yingchun ZHANG , Yiwei SHI , Ruijie YANG , Xin WANG , Zhiguo SONG , Min WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078
-
[15]
Meifeng Zhu , Jin Cheng , Kai Huang , Cheng Lian , Shouhong Xu , Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166
-
[16]
Kaifu Zhang , Shan Gao , Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045
-
[17]
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
-
[18]
Jie ZHAO , Huili ZHANG , Xiaoqing LU , Zhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213
-
[19]
Zhenming Xu , Mingbo Zheng , Zhenhui Liu , Duo Chen , Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022
-
[20]
Shenhao QIU , Qingquan XIAO , Huazhu TANG , Quan XIE . First-principles study on electronic structure, optical and magnetic properties of rare earth elements X (X=Sc, Y, La, Ce, Eu) doped with two-dimensional GaSe. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2250-2258. doi: 10.11862/CJIC.20240104
-
[1]
Metrics
- PDF Downloads(644)
- Abstract views(1818)
- HTML views(104)