Citation: QIU Yi-Xiang, WAN Ming-Da, CHEN Xian-Yang, WANG Shu-Guang. Reaction Mechanisms of Ethylene Hydrogenation Catalyzed by ld(I) Complexes[J]. Acta Physico-Chimica Sinica, ;2013, 29(02): 279-286. doi: 10.3866/PKU.WHXB201212061 shu

Reaction Mechanisms of Ethylene Hydrogenation Catalyzed by ld(I) Complexes

  • Received Date: 27 June 2012
    Available Online: 6 December 2012

    Fund Project: 国家自然科学基金(20973109) (20973109) 国家大学生创新性实验计划(S110ITP5009) (S110ITP5009)上海交通大学大学生创新实践计划(IPP6123, IPP6128)资助项目 (IPP6123, IPP6128)

  • The reaction mechanisms of ethylene hydrogenation catalyzed by Au(I) complexes AuX (X=F, Cl, Br, I) and AuPR3+ (R = F, Cl, Br, I, H, Me, Ph) were investigated using density functional theory at the B3LYP level. The calculated results indicated that Au(I) complexes were effective catalysts in the hydrogenation of ethylene. AuPR3+ showed higher catalytic activity than AuX and the effect of changing the electron donating or withdrawing ability of the ligand on catalytic activity was large. Natural bond orbital analysis indicated that the interactions between the Au(I) complex and H2/C2H4 not only weakened the H― H/C=C bond strength, but also decreased the energy of the σH―H*πC=C* orbital level. As a result, the energy differences of πC=CH―H*H―H-πC=C* decreased, and ethylene hydrogenation was facilitated. A linear correlation was observed between the activation energies and πC=CH―H*H―H-πC=C*. The more an Au(I) complex affected the σH―H*/πC=C* orbital levels, the higher its catalytic activity.

  • 加载中
    1. [1]

      (1) Fuerstner, A.; Davies, P.W. Angew. Chem. Int. Edit. 2007, 46,3410.

    2. [2]

      (2) Alcarazo, M.; Stork, T.; Anoop, A.; Thiel,W.; Fürstner, A.Angew. Chem. Int. Edit. 2010, 49, 2542. doi: 10.1002/anie.v49:14

    3. [3]

      (3) Correa, A.; Nolan, S. P.; Cavallo, L. Top. Curr. Chem. 2011,302, 131. doi: 10.1007/978-3-642-21083-9

    4. [4]

      (4) Young, J. F.; Osborne, J. A.; Jardine, F. A.;Wilkinson, G. Chem. Commun. 1965, 131.

    5. [5]

      (5) Osborn, J. A.; Powell, A. R.;Wilkinson, G. Chem. Commun.1966, 461.

    6. [6]

      (6) Johnson, L. K.; Killian, C. M.; Brookhart, M. J. Am. Chem. Soc.1995, 117, 6414. doi: 10.1021/ja00128a054

    7. [7]

      (7) Drent, E.; Budzelaar, P. H. M. Chem. Rev. 1996, 96, 663.

    8. [8]

      (8) Nolan, S. P. Accounts Chem. Res. 2011, 44, 91. doi: 10.1021/ar1000764

    9. [9]

      (9) Krause, N.;Winter, C. Chem. Rev. 2011, 111, 1994. doi: 10.1021/cr1004088

    10. [10]

      (10) nzalez-Arellano, C.; Corma, A.; Iglesias, M.; Sanchez, F.Chem. Commun. 2005, 3451.

    11. [11]

      (11) Xue,W. J.; Zhang, X. Y.; Li, P.; Liu, Z. T.; Hao, Z. P.; Ma, C. Y.Acta Phys. -Chim. Sin. 2011, 27, 1730. [薛雯娟, 张新艳,李鹏, 刘昭铁, 郝郑平, 麻春艳. 物理化学学报, 2011, 27,1730.] doi: 10.3866/PKU.WHXB20110719

    12. [12]

      (12) Correa, A.; Marion, N.; Fensterbank, L.; Malacria, M.; Nolan,S.; Cavallo, L. Angew. Chem. Int. Edit. 2008, 47, 718.

    13. [13]

      (13) Frenking, G.; Frölich, N. Chem. Rev. 2000, 100, 717. doi: 10.1021/cr980401l

    14. [14]

      (14) Schmidbaur, H.; Schier, A. Organometallics 2010, 29, 2. doi: 10.1021/om900900u

    15. [15]

      (15) Qiu, Y. X.;WANG, S. G. Chem. J. Chin. Univ. 2012, 33,2549. [仇毅翔, 王曙光. 高等学校化学学报, 2012, 33, 2549.]

    16. [16]

      (16) Qiu, Y. X.;WANG, S. G. Acta Phys. -Chim. Sin. 2012, 28,811. [仇毅翔, 王曙光. 物理化学学报, 2012, 28, 811.] doi: 10.3866/PKU.WHXB201202082

    17. [17]

      (17) Birkenstock, U.; Holm, R.; Reinfandt, B.; Storp, S. J. Catal.1985, 93, 55. doi: 10.1016/0021-9517(85)90150-2

    18. [18]

      (18) Crabtree, R. Acc. Chem. Res. 1979, 12, 331. doi: 10.1021/ar50141a005

    19. [19]

      (19) Glukhovtsev, M. N.; Pross, A.; McGrath, M. P.; Radom, L.J. Chem. Phys. 1995, 103, 1878. doi: 10.1063/1.469712

    20. [20]

      (20) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 03,Revision A.01; Gaussian Inc.: Pittsburgh, PA, 2003.

    21. [21]

      (21) Glendening, E. D.; Reed, A. E.; Carpenter, J. E.;Weinhold, F.NBO Version 3.1; Theoretical Chemistry Institute, University ofWisconsin: Madison, 1996.

    22. [22]

      (22) March, J. Advanced Organic Chemistry;Wiley: New York, 1992.

    23. [23]

      (23) Dewar, M. J. S. Bull. Soc. Chim. Fr. 1951, 18, C71.

    24. [24]

      (24) Chatt, J.; Duncanson, L. A. J. Chem. Soc. 1953, 2939.

    25. [25]

      (25) Weinhold, F.; Landis, C. R. Valency and Bonding: a Natural Bond Orbital Donor-Accpetor Perspective; CambridgeUniversity Press: Cambridge, 2005.

    26. [26]

      (26) Dias, H. V. R.;Wu, J. Eur. J. Inorg. Chem. 2008, 509.

    27. [27]

      (27) Nechaev, M. S.; Rayon, V. M.; Frenking, G. J. Phys. Chem. A2004, 108, 3134. doi: 10.1021/jp031185+


  • 加载中
    1. [1]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    2. [2]

      Bolin Sun Jie Chen Ling Zhou . 乙烯型卤代烃的亲核取代反应. University Chemistry, 2025, 40(8): 152-157. doi: 10.12461/PKU.DXHX202410032

    3. [3]

      Lijun Yang . Thoughts and Practices on Enhancing Students’ Comprehension through Visualized Instruction of Structural Chemistry. University Chemistry, 2025, 40(10): 295-302. doi: 10.12461/PKU.DXHX202411048

    4. [4]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    5. [5]

      Mingyang MenJinghua WuGaozhan LiuJing ZhangNini ZhangXiayin Yao . Sulfide Solid Electrolyte Synthesized by Liquid Phase Approach and Application in All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100004-0. doi: 10.3866/PKU.WHXB202309019

    6. [6]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    7. [7]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    8. [8]

      Zhi Chai Huashan Huang Xukai Shi Yujing Lan Zhentao Yuan Hong Yan . Wittig反应的立体选择性. University Chemistry, 2025, 40(8): 192-201. doi: 10.12461/PKU.DXHX202410046

    9. [9]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    10. [10]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    11. [11]

      Guowen Xing Guangjian Liu Le Chang . Five Types of Reactions of Carbonyl Oxonium Intermediates in University Organic Chemistry Teaching. University Chemistry, 2025, 40(4): 282-290. doi: 10.12461/PKU.DXHX202407058

    12. [12]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    13. [13]

      Jiabo Huang Quanxin Li Zhongyan Cao Li Dang Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172

    14. [14]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    15. [15]

      Qian Huang Zhaowei Li Jianing Zhao Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018

    16. [16]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    17. [17]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    18. [18]

      Lancanghong Chen Xingtai Yu Tianlei Zhao Qizhi Yao . Exploration of Abnormal Phenomena in Iodometric Copper Quantitation Experiment. University Chemistry, 2025, 40(7): 315-320. doi: 10.12461/PKU.DXHX202408089

    19. [19]

      Linfeng XiaoWanlu RenShishi ShenMengshan ChenRunhua LiaoYingtang ZhouXibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036

    20. [20]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

Metrics
  • PDF Downloads(644)
  • Abstract views(1956)
  • HTML views(113)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return