Citation: QIU Yi-Xiang, WAN Ming-Da, CHEN Xian-Yang, WANG Shu-Guang. Reaction Mechanisms of Ethylene Hydrogenation Catalyzed by ld(I) Complexes[J]. Acta Physico-Chimica Sinica, ;2013, 29(02): 279-286. doi: 10.3866/PKU.WHXB201212061
-
The reaction mechanisms of ethylene hydrogenation catalyzed by Au(I) complexes AuX (X=F, Cl, Br, I) and AuPR3+ (R = F, Cl, Br, I, H, Me, Ph) were investigated using density functional theory at the B3LYP level. The calculated results indicated that Au(I) complexes were effective catalysts in the hydrogenation of ethylene. AuPR3+ showed higher catalytic activity than AuX and the effect of changing the electron donating or withdrawing ability of the ligand on catalytic activity was large. Natural bond orbital analysis indicated that the interactions between the Au(I) complex and H2/C2H4 not only weakened the H― H/C=C bond strength, but also decreased the energy of the σH―H*、πC=C* orbital level. As a result, the energy differences of πC=C-σH―H*/σH―H-πC=C* decreased, and ethylene hydrogenation was facilitated. A linear correlation was observed between the activation energies and πC=C-σH―H*/σH―H-πC=C*. The more an Au(I) complex affected the σH―H*/πC=C* orbital levels, the higher its catalytic activity.
-
-
[1]
(1) Fuerstner, A.; Davies, P.W. Angew. Chem. Int. Edit. 2007, 46,3410.
-
[2]
(2) Alcarazo, M.; Stork, T.; Anoop, A.; Thiel,W.; Fürstner, A.Angew. Chem. Int. Edit. 2010, 49, 2542. doi: 10.1002/anie.v49:14
-
[3]
(3) Correa, A.; Nolan, S. P.; Cavallo, L. Top. Curr. Chem. 2011,302, 131. doi: 10.1007/978-3-642-21083-9
-
[4]
(4) Young, J. F.; Osborne, J. A.; Jardine, F. A.;Wilkinson, G. Chem. Commun. 1965, 131.
-
[5]
(5) Osborn, J. A.; Powell, A. R.;Wilkinson, G. Chem. Commun.1966, 461.
-
[6]
(6) Johnson, L. K.; Killian, C. M.; Brookhart, M. J. Am. Chem. Soc.1995, 117, 6414. doi: 10.1021/ja00128a054
-
[7]
(7) Drent, E.; Budzelaar, P. H. M. Chem. Rev. 1996, 96, 663.
-
[8]
(8) Nolan, S. P. Accounts Chem. Res. 2011, 44, 91. doi: 10.1021/ar1000764
-
[9]
(9) Krause, N.;Winter, C. Chem. Rev. 2011, 111, 1994. doi: 10.1021/cr1004088
-
[10]
(10) nzalez-Arellano, C.; Corma, A.; Iglesias, M.; Sanchez, F.Chem. Commun. 2005, 3451.
-
[11]
(11) Xue,W. J.; Zhang, X. Y.; Li, P.; Liu, Z. T.; Hao, Z. P.; Ma, C. Y.Acta Phys. -Chim. Sin. 2011, 27, 1730. [薛雯娟, 张新艳,李鹏, 刘昭铁, 郝郑平, 麻春艳. 物理化学学报, 2011, 27,1730.] doi: 10.3866/PKU.WHXB20110719
-
[12]
(12) Correa, A.; Marion, N.; Fensterbank, L.; Malacria, M.; Nolan,S.; Cavallo, L. Angew. Chem. Int. Edit. 2008, 47, 718.
-
[13]
(13) Frenking, G.; Frölich, N. Chem. Rev. 2000, 100, 717. doi: 10.1021/cr980401l
-
[14]
(14) Schmidbaur, H.; Schier, A. Organometallics 2010, 29, 2. doi: 10.1021/om900900u
-
[15]
(15) Qiu, Y. X.;WANG, S. G. Chem. J. Chin. Univ. 2012, 33,2549. [仇毅翔, 王曙光. 高等学校化学学报, 2012, 33, 2549.]
-
[16]
(16) Qiu, Y. X.;WANG, S. G. Acta Phys. -Chim. Sin. 2012, 28,811. [仇毅翔, 王曙光. 物理化学学报, 2012, 28, 811.] doi: 10.3866/PKU.WHXB201202082
-
[17]
(17) Birkenstock, U.; Holm, R.; Reinfandt, B.; Storp, S. J. Catal.1985, 93, 55. doi: 10.1016/0021-9517(85)90150-2
-
[18]
(18) Crabtree, R. Acc. Chem. Res. 1979, 12, 331. doi: 10.1021/ar50141a005
-
[19]
(19) Glukhovtsev, M. N.; Pross, A.; McGrath, M. P.; Radom, L.J. Chem. Phys. 1995, 103, 1878. doi: 10.1063/1.469712
-
[20]
(20) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 03,Revision A.01; Gaussian Inc.: Pittsburgh, PA, 2003.
-
[21]
(21) Glendening, E. D.; Reed, A. E.; Carpenter, J. E.;Weinhold, F.NBO Version 3.1; Theoretical Chemistry Institute, University ofWisconsin: Madison, 1996.
-
[22]
(22) March, J. Advanced Organic Chemistry;Wiley: New York, 1992.
-
[23]
(23) Dewar, M. J. S. Bull. Soc. Chim. Fr. 1951, 18, C71.
-
[24]
(24) Chatt, J.; Duncanson, L. A. J. Chem. Soc. 1953, 2939.
-
[25]
(25) Weinhold, F.; Landis, C. R. Valency and Bonding: a Natural Bond Orbital Donor-Accpetor Perspective; CambridgeUniversity Press: Cambridge, 2005.
-
[26]
(26) Dias, H. V. R.;Wu, J. Eur. J. Inorg. Chem. 2008, 509.
-
[27]
(27) Nechaev, M. S.; Rayon, V. M.; Frenking, G. J. Phys. Chem. A2004, 108, 3134. doi: 10.1021/jp031185+
-
[1]
-
-
[1]
Ronghao Zhao , Yifan Liang , Mengyao Shi , Rongxiu Zhu , Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101
-
[2]
Wentao Lin , Wenfeng Wang , Yaofeng Yuan , Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095
-
[3]
Ling Fan , Meili Pang , Yeyun Zhang , Yanmei Wang , Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024
-
[4]
Qian Huang , Zhaowei Li , Jianing Zhao , Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018
-
[5]
Yong Wang , Yingying Zhao , Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009
-
[6]
Yingchun ZHANG , Yiwei SHI , Ruijie YANG , Xin WANG , Zhiguo SONG , Min WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078
-
[7]
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
-
[8]
Zhenming Xu , Mingbo Zheng , Zhenhui Liu , Duo Chen , Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022
-
[9]
Maitri Bhattacharjee , Rekha Boruah Smriti , R. N. Dutta Purkayastha , Waldemar Maniukiewicz , Shubhamoy Chowdhury , Debasish Maiti , Tamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007
-
[10]
Xiaochen Zhang , Fei Yu , Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026
-
[11]
Chengqian Mao , Yanghan Chen , Haotong Bai , Junru Huang , Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014
-
[12]
Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047
-
[13]
Cunling Ye , Xitong Zhao , Hongfang Wang , Zhike Wang . A Formula for the Calculation of Complex Concentrations Arising from Side Reactions and Its Applications. University Chemistry, 2024, 39(4): 382-386. doi: 10.3866/PKU.DXHX202310043
-
[14]
Haitang WANG , Yanni LING , Xiaqing MA , Yuxin CHEN , Rui ZHANG , Keyi WANG , Ying ZHANG , Wenmin WANG . Construction, crystal structures, and biological activities of two LnⅢ3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188
-
[15]
Ji Qi , Jianan Zhu , Yanxu Zhang , Jiahao Yang , Chunting Zhang . Visible Color Change of Copper (II) Complexes in Reversible SCSC Transformation: The Effect of Structure on Color. University Chemistry, 2024, 39(3): 43-57. doi: 10.3866/PKU.DXHX202307050
-
[16]
Tianyun Chen , Ruilin Xiao , Xinsheng Gu , Yunyi Shao , Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017
-
[17]
Keweiyang Zhang , Zihan Fan , Liyuan Xiao , Haitao Long , Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084
-
[18]
Jingjing QING , Fan HE , Zhihui LIU , Shuaipeng HOU , Ya LIU , Yifan JIANG , Mengting TAN , Lifang HE , Fuxing ZHANG , Xiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003
-
[19]
Yongpo Zhang , Xinfeng Li , Yafei Song , Mengyao Sun , Congcong Yin , Chunyan Gao , Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092
-
[20]
Xin MA , Ya SUN , Na SUN , Qian KANG , Jiajia ZHANG , Ruitao ZHU , Xiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357
-
[1]
Metrics
- PDF Downloads(644)
- Abstract views(1747)
- HTML views(89)