Citation: ZHANG Long, HAN Jing-Jing, LI Jia-Jia, LIU Tian-Qing. Properties and Spreading Kinetics of Water-Based Cypermethrin Microemulsions[J]. Acta Physico-Chimica Sinica, ;2013, 29(02): 346-350. doi: 10.3866/PKU.WHXB201211302
-
Water-based cypermethrin microemulsions were prepared by adding oil to emulsified water, with ethyl butyrate as the solvent, TritonX-100 (TX-100) and sodium dodecyl benzene sulfonate (SDBS) as surfactants, and n-butyl alcohol (n-C4H9OH) as a co-surfactant. The structure and properties of the microemulsions were investigated by determining the phase diagram, and using negative-staining transmission electron microscopy, and conductivity, surface tension, dynamic light scattering, and contact angle measurements. The spreading kinetics of the microemulsions on the leaf surface of Youngfu wheat was also studied. The results showed that the cypermethrin microemulsions followed the oil-in-water model, and had a strong solubilizing effect on cypermethrin. The microemulsions showed a low contact angle, and low surface tension, and the droplet radius was about 45 nm. The kinetics for the spreading of the microemulsions on the leaf surface of Youngfu wheat fitted a second-order kinetic equation. The kinetic rate constants were 0.1090 (°)-1·min-1 (20℃) and 0.1572 (°)-1·min-1 (30℃), and the activation energy was 27.03 kJ·mol-1.
-
Keywords:
-
Cypermethrin
, - Microemulsion,
- Oil in water,
- Contact angle,
- Spreading kinetics
-
-
-
[1]
(1) Wang, L. J.; Li, X. F.; Zhang, G. Y.; Dong, J. F.; Eastoe, J.J. Colloid Interface Sci. 2007, 314, 230. doi: 10.1016/j.jcis.2007.04.079
-
[2]
(2) Chen, F. L.;Wang, Y.; Zheng, F. N.;Wu, Y. T.; Liang,W. P.Colloids Surf. A 2000, 175, 257. doi: 10.1016/S0927-7757(00)00505-7
-
[3]
(3) Lee, H. J.; Shan, G.; Ahn, K. C.; Park, E. K.;Watanabe, T.; Gee,S. J.; Hammock, B. D. J. Agric. Food Chem. 2004, 52, 1039.doi: 10.1021/jf030519p
-
[4]
(4) Rosenheimer, M. S.; Dubowski, Y. J. Phys. Chem. C 2007, 111,11682. doi: 10.1021/jp072937t
-
[5]
(5) Nurettin, S.; Sultan, B.; Pinar, I. Colloids Surf. A 2011, 386, 16.doi: 10.1016/j.colsurfa.2011.06.023
-
[6]
(6) Liu,W. P.; Gan, J. J.; Lee, S.;Werner, I. J. Agric. Food Chem.2004, 52, 6233. doi: 10.1021/jf0490910
-
[7]
(7) Wang, Q.; Qiu, J.; Zhu,W.; Jia, G.; Li, J.; Bi, C.; Zhou, Z.Environ. Sci. Technol. 2006, 40, 721. doi: 10.1021/es052025+
-
[8]
(8) Qin, S. J.; Gan, J. J. J. Agric. Food Chem. 2007, 55, 5734. doi: 10.1021/jf0708894
-
[9]
(9) Sundaram, K. M. S.; Szeto, S. Y. J. Agric. Food Chem. 1984,32, 1138. doi: 10.1021/jf00125a052
-
[10]
(10) Schafer, R. B.; Pettigrove, V.; Rose, G.; Allinson, G.;Wightwick, A.; Shimeta, J.; Kühne, R.; Kefford, B. J. Environ. Sci. Technol. 2011, 45, 1665. doi: 10.1021/es103227q
-
[11]
(11) Sherma, J. Anal. Chem. 1995, 67, 1.
-
[12]
(12) Zhang, X.; Liu, J. J. Agric. Food Chem. 2011, 59, 1308. doi: 10.1021/jf1034459
-
[13]
(13) Clarens, A. F.; Zimmerman, J. B.; Keoleian, G. A.; Hayes, K. F.;Skerlos, S. J. Environ. Sci. Technol. 2008, 42, 8534. doi: 10.1021/es800791z
-
[14]
(14) Nichkova, M.; Fu, X.; Yang, Z.; Zhong, P.; Sanborn, J. R.;Chang, D.; Gee, S. J.; Hammock, B. D. J. Agric. Food Chem.2009, 57, 5673. doi: 10.1021/jf900652a
-
[15]
(15) Hartnik, T.; Styrishave, B. J. Agric. Food Chem. 2008, 56,11057. doi: 10.1021/jf8017904
-
[16]
(16) Guo, R.; Liu, T. Q.; Yu,W. L. Langmuir 1999, 15, 624.
-
[17]
(17) Liu, T. Q.; Song, L.; Gan, Y. Y.; Chen, L. H. Colloids Surf. A2008, 329, 198. doi: 10.1016/j.colsurfa.2008.07.009
-
[18]
(18) Qiao, Y.; Lin, Y. Y.;Wang, Y. J.; Li, Z. B.; Huang, J. B.Langmuir 2011, 27, 1718. doi: 10.1021/la104447d
-
[19]
(19) Peng, X. H.; Zheng, P. Z.; Ma, Y. M.; Yin, T. X.; An, X. Q.;Shen,W. G. Acta Phys. -Chim. Sin. 2011, 27, 1026. [彭旭红,郑佩珠, 马元明, 殷天翔, 安学勤, 沈伟国. 物理化学学报,2011, 27, 1026.] doi: 10.3866/PKU.WHXB20110503
-
[20]
(20) Pasandideh, F. M.; Qiao, Y. M.; Chandra, S.; Mostaghimi, J.Phys. Fluids 1996, 8, 650. doi: 10.1063/1.868850
-
[21]
(21) Ukiwe, C.; Kwok, D. Y. Langmuir 2005, 21, 666. doi: 10.1021/la0481288
-
[22]
(22) Vadillo, D. C.; Soucemarianadin, A.; Delattre, C.; Roux, D. C.D. Phys. Fluids 2009, 21, 122002. doi: 10.1063/1.3276259
-
[23]
(23) Lee, J. B.; Lee, S. H. Langmuir 2011, 27, 6565. doi: 10.1021/la104829x
-
[24]
(24) Svitova, T.; Hoffmann, H.; Hill, R. M. Langmuir 1996, 12,1712. doi: 10.1021/la9505172
-
[25]
(25) Guo, R.; Liu, T. Q. J. Disper. Sci. Technol. 1999, 20, 1327. doi: 10.1080/01932699908943856
-
[26]
(26) Liu, T. Q.; Zhang, Q. Q.; Fan, G. K.; Guo, R. Acta Chim. Sin.2000, 58, 840. [刘天晴, 张启清, 范国康, 郭荣. 化学学报,2000, 58, 840.]
-
[1]
-
-
[1]
Qin Li , Ziyao Jia , Ye Chen , Mingze Ma , Lin Li , Tao Huang . A Journey into the Enigmatic World of Pickering Emulsion: A Chemical Science Popularization Experiment. University Chemistry, 2024, 39(9): 311-318. doi: 10.3866/PKU.DXHX202306035
-
[2]
Chunai Dai , Yongsheng Han , Luting Yan , Zhen Li , Yingze Cao . Ideological and Political Design of Solid-liquid Contact Angle Measurement Experiment. University Chemistry, 2024, 39(2): 28-33. doi: 10.3866/PKU.DXHX202306065
-
[3]
Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029
-
[4]
Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093
-
[5]
Jinfu Ma , Hui Lu , Jiandong Wu , Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052
-
[6]
Yeyun Zhang , Ling Fan , Yanmei Wang , Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044
-
[7]
Xuzhen Wang , Xinkui Wang , Dongxu Tian , Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074
-
[8]
Dexin Tan , Limin Liang , Baoyi Lv , Huiwen Guan , Haicheng Chen , Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048
-
[9]
Yiying Yang , Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074
-
[10]
Yue Wu , Jun Li , Bo Zhang , Yan Yang , Haibo Li , Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028
-
[11]
You Wu , Chang Cheng , Kezhen Qi , Bei Cheng , Jianjun Zhang , Jiaguo Yu , Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027
-
[12]
Yan Li , Xinze Wang , Xue Yao , Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene E→Z Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053
-
[13]
Yuena Yang , Xufang Hu , Yushan Liu , Yaya Kuang , Jian Ling , Qiue Cao , Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125
-
[14]
Gaofeng Zeng , Shuyu Liu , Manle Jiang , Yu Wang , Ping Xu , Lei Wang . Micro/Nanorobots for Pollution Detection and Toxic Removal. University Chemistry, 2024, 39(9): 229-234. doi: 10.12461/PKU.DXHX202311055
-
[15]
Min Gu , Huiwen Xiong , Liling Liu , Jilie Kong , Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120
-
[16]
Zijian Jiang , Yuang Liu , Yijian Zong , Yong Fan , Wanchun Zhu , Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101
-
[17]
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030
-
[18]
Jinyao Du , Xingchao Zang , Ningning Xu , Yongjun Liu , Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039
-
[19]
Xiutao Xu , Chunfeng Shao , Jinfeng Zhang , Zhongliao Wang , Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031
-
[20]
Yu Wang , Shoulei Zhang , Tianming Lv , Yan Su , Xianyu Liu , Fuping Tian , Changgong Meng . Introduce a Comprehensive Inorganic Synthesis Experiment: Synthesis of Nano Zinc Oxide via Microemulsion Using Waste Soybean Oil. University Chemistry, 2024, 39(7): 316-321. doi: 10.3866/PKU.DXHX202311035
-
[1]
Metrics
- PDF Downloads(645)
- Abstract views(916)
- HTML views(3)