Citation: LIU Rui, Teng Bo-Tao, QUAN Jie-Li, LANG Jia-Jian, Luo Meng-Fei. A Density Functional Theory Study of HF Adsorption on the α-AlF3(0001) Surface[J]. Acta Physico-Chimica Sinica, ;2013, 29(02): 271-278. doi: 10.3866/PKU.WHXB201211301 shu

A Density Functional Theory Study of HF Adsorption on the α-AlF3(0001) Surface

  • Received Date: 13 September 2012
    Available Online: 30 November 2012

    Fund Project: 国家自然科学基金(20903081) (20903081)浙江省自然科学基金(Y407163)资助项目 (Y407163)

  • Using density functional theory, the adsorption behaviors of HF at α-AlF3(0001) surfaces with different coverages of 3F, 2F, 1F, and Al terminations were studied systematically. The electronic interactions between HF and the α-AlF3(0001) surfaces were also analyzed. Our results indicated that physisorption occurs when HF adsorbs at the 3F-terminated surface. Strong chemisorption occurs, and Al-F and FHF structures form when HF adsorbs at surfaces with 2F and 1F terminations. Under these conditions, the HF molecule is activated, and might take part in the subsequent fluorination reactions. Dissociated adsorption occurs, and Al-F and Al-H bonds form when HF is adsorbed on the Al-terminated surface. The unsaturated coordination numbers for surface Al with 3F, 2F, 1F, and Al-terminated surfaces are 0, 1, 2, and 3, respectively. The coordination number of the AlF2 surface is saturated when one HF molecule adsorbs; then, only physical adsorption occurs for any subsequently adsorbed HF molecules. However, it can still chemisorb at the 1F and Al-terminated surfaces. It is therefore reasonable to deduce that the higher the unsaturated coordination number of the surface, the higher the amount of activated HF, and possibly the higher the catalytic activities in the fluorination reactions. Charge density difference and density of states indicated that weak interactions occur between the HF and the 3F-terminated surface, while strong interactions occur between the HF and the 2F, 1F, Al-terminated surfaces.

  • 加载中
    1. [1]

      (1) Song, Y. C. Chin. Petrol. Chem. Ind. 2003, 56. [宋玉春. 中国石油和化工, 2003, 56.]

    2. [2]

      (2) Coq, B.; Medina, F.; Tichit, D.; Morato, A. Catal. Today 2004,88, 127. doi: 10.1016/j.cattod.2003.11.008

    3. [3]

      (3) Dambournet, D.; Eltanamy, G.; Vimont, A.; Lavalley, J. C.; upil, J. M.; Demourgues, A.; Durand, E.; Majimel, J.;Rudiger, S.; Kemnitz, E. Chem. -Eur. J. 2008, 14, 6205. doi: 10.1002/chem.v14:20

    4. [4]

      (4) Kemnitz, E.; Groβ, U.; Rüdiger, S.; Shekar, C. S. Angew. Chem. Int. Edit. 2003, 42, 4251.

    5. [5]

      (5) Kemnitz, E.; Kohne, A.; Lieske, E. J. Fluorine Chem. 1997, 81,197. doi: 10.1016/S0022-1139(96)03515-4

    6. [6]

      (6) Sung, D. J.; Moon, D. J.; Moon, S.; Kim, J.; Hong, S. I. Appl. Catal. A 2005, 292, 130. doi: 10.1016/j.apcata.2005.05.050

    7. [7]

      (7) Qian, L.; Xing, L. Q.; Bi, Q. Y.; Li, H. F.; Chen, K. F.; Zhang,X. L.; Lu, J. Q.; Luo, M. F. Acta Phys. -Chim. Sin. 2009, 25,336. [钱林, 邢丽琼, 毕庆员, 李洪芳, 陈科峰, 张学良,鲁继青, 罗孟飞. 物理化学学报, 2009, 25, 336.] doi: 10.3866/PKU.WHXB20090224

    8. [8]

      (8) Scholz, G.; König, R.; Petersen, J.; Angelow, B.; Dörfel, I.;Kemnitz, E. Chem. Mater. 2008, 20, 5406. doi: 10.1021/cm801135h

    9. [9]

      (9) Wander, A.; Searle, B.; Bailey, C.; Harrison, N. J. Phys. Chem. B 2005, 109, 22935. doi: 10.1021/jp052646p

    10. [10]

      (10) Bailey, C.; Mukhopadhyay, S.;Wander, A.; Searle, B.; Harrison,N. J. Phys. Conference Series 2008, 117, 012004. doi: 10.1088/1742-6596/117/1/012004

    11. [11]

      (11) Mukhopadhyay, S.; Bailey, C.;Wander, A.; Searle, B.; Muryn,C.; Schroeder, S.; Lindsay, R.;Weiher, N.; Harrison, N. Surf. Sci. 2007, 601, 4433. doi: 10.1016/j.susc.2007.04.231

    12. [12]

      (12) Bailey, C.; Mukhopadhyay, S.;Wander, A.; Searle, B.; Harrison,N. J. Phys. Chem. C 2009, 113, 4976.

    13. [13]

      (13) Wander, A.; Bailey, C. L.; Searle, B. G.; Mukhopadhyay, S.;Harrison, N. M. Phys. Chem. Chem. Phys. 2005, 7, 3989.

    14. [14]

      (14) Wander, A.; Bailey, C.; Mukhopadhyay, S.; Searle, B.; Harrison,N. J. Phys. Chem. C 2008, 112, 6515. doi: 10.1021/jp710433n

    15. [15]

      (15) Bailey, C.; Mukhopadhyay, S.;Wander, A.; Searle, B.; Carr, J.;Harrison, N. Phys. Chem. Chem. Phys. 2010, 12, 6124.

    16. [16]

      (16) Bailey, C.;Wander, A.; Mukhopadhyay, S.; Searle, B.; Harrison,N. Phys. Chem. Chem. Phys. 2008, 10, 2918.

    17. [17]

      (17) Kresse, G.; Hafner, J. Phys. Rev. B 1994, 49, 14251. doi: 10.1103/PhysRevB.49.14251

    18. [18]

      (18) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996,77, 3865. doi: 10.1103/PhysRevLett.77.3865

    19. [19]

      (19) Kresse, G.; Joubert, D. Phys. Rev. B 1999, 59, 1758. doi: 10.1103/PhysRevB.59.1758

    20. [20]

      (20) Monkhorst, H. J.; Pack, J. D. Phys. Rev. B 1976, 13, 5188. doi: 10.1103/PhysRevB.13.5188

    21. [21]

      (21) Hoppe, R.; Kissel, D. J. Fluorine Chem. 1984, 24, 327.

    22. [22]

      (22) Chaudhuri, S.; Chupas, P.; Morgan, B. J.; Madden, P. A.; Grey,C. P. Phys. Chem. Chem. Phys. 2006, 8, 5045.

    23. [23]

      (23) Bi, Q.; Lu, J.; Xing, L.; Guo, M.; Luo, M. Chinese Journal of Chemical Physics 2010, 23, 89. doi: 10.1088/1674-0068/23/01/89-94

    24. [24]

      (24) Bi, Q. Y.; Qian, L.; Xing, L. Q.; Tao, L. P.; Zhou, Q.; Lu, J. Q.;Luo, M. F. J. Fluorine Chem. 2009, 130, 528. doi: 10.1016/j.jfluchem.2009.03.001

    25. [25]

      (25) Quan, J. L.; Teng, B. T.;Wen, X. D.; Zhao, Y.; Liu, R.; Luo, M.F. J. Chem. Phys. 2012, 136, 114701. doi: 10.1063/1.3694102


  • 加载中
    1. [1]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    2. [2]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    3. [3]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    4. [4]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    5. [5]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    6. [6]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    7. [7]

      Xiao Liu Guangzhong Cao Mingli Gao Hong Wu Hongyan Feng Chenxiao Jiang Tongwen Xu . Seawater Salinity Gradient Energy’s Job Application in the Field of Membranes. University Chemistry, 2024, 39(9): 279-282. doi: 10.3866/PKU.DXHX202306043

    8. [8]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    9. [9]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    10. [10]

      Haiping Wang . A Streamlined Method for Drawing Lewis Structures Using the Valence State of Outer Atoms. University Chemistry, 2024, 39(8): 383-388. doi: 10.12461/PKU.DXHX202401073

    11. [11]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    12. [12]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    13. [13]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    14. [14]

      Yuping Wei Yiting Wang Jialiang Jiang Jinxuan Deng Hong Zhang Xiaofei Ma Junjie Li . Interdisciplinary Teaching Practice——Flexible Wearable Electronic Skin for Low-Temperature Environments. University Chemistry, 2024, 39(10): 261-270. doi: 10.12461/PKU.DXHX202404007

    15. [15]

      Hua Hou Baoshan Wang . Course Ideology and Politics Education in Theoretical and Computational Chemistry. University Chemistry, 2024, 39(2): 307-313. doi: 10.3866/PKU.DXHX202309045

    16. [16]

      Jia Yao Xiaogang Peng . Theory of Macroscopic Molecular Systems: Theoretical Framework of the Physical Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 27-37. doi: 10.12461/PKU.DXHX202408117

    17. [17]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    18. [18]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    19. [19]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    20. [20]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

Metrics
  • PDF Downloads(1008)
  • Abstract views(987)
  • HTML views(37)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return