Citation: BAI Shu, ZHOU Rong, LIU Fu-Feng. Rational Design of Affinity Ligand for the Oriented Immobilization of Trypsin[J]. Acta Physico-Chimica Sinica, ;2013, 29(02): 439-448. doi: 10.3866/PKU.WHXB201211272 shu

Rational Design of Affinity Ligand for the Oriented Immobilization of Trypsin

  • Received Date: 20 September 2012
    Available Online: 27 November 2012

    Fund Project: 国家自然科学基金(20906068) (20906068)天津市应用基础与前沿技术研究计划项目(10JCYBJC04500)资助 (10JCYBJC04500)

  • Based on the three-dimensional (3D) structure of trypsin, 2-nitrophenyl-β-D-glucopyranoside was selected from the ZINC database to be a candidate affinity ligand for trypsin. The affinity between trypsin and the ligand was analyzed. It is found that the interactions between the ligand and the protein are dominated by van der Waals interactions and hydrogen bonding. Molecular dynamics (MD) simulations were used to verify the affinity between the ligand and trypsin; the simulations indicate that the complex remains stable, and the distance between the ligand and the target protein changes only a little. It is found that one water molecule acts as a bridge between the ligand and the protein pocket via hydrogen bonding. Finally, the ligand was coupled to Sepharose CL-6B gel, and was used to immobilize trypsin in an oriented fashion. It is found that the enzyme activity and specific activity of the oriented immobilized trypsin are 340.8 U·g-1 and 300.3 U·mg-1, respectively. These values are 10 and 5 times that of the free enzyme. The results of this work indicate that the combination of docking and MD simulations are promising for the rational design of ligands for oriented immobilization.

  • 加载中
    1. [1]

      (1) Bornscheuer, U. T.; Huisman, G.W.; Kazlauskas, R. J.; Lutz, S.;Moore, J. C.; Robins, K. Nature 2012, 485, 185. doi: 10.1038/nature11117

    2. [2]

      (2) Schmid, A.; Dordick, J. S.; Hauer, B.; Kiener, A.;Wubbolts, M.;Witholt, B. Nature 2001, 409, 258. doi: 10.1038/35051736

    3. [3]

      (3) Nestl, B. M.; Nebel, B. A.; Hauer, B. Curr. Opin. Chem. Biol.2011, 15, 187. doi: 10.1016/j.cbpa.2010.11.019

    4. [4]

      (4) Zhang, B.;Weng, Y.; Xu, H.; Mao, Z. Appl. Microbiol. Biotechnol. 2012, 93, 61. doi: 10.1007/s00253-011-3672-x

    5. [5]

      (5) Sheldon, R. A. Chem. Soc. Rev. 2012, 41, 1437. doi: 10.1039/c1cs15219j

    6. [6]

      (6) Huang, Z. L.; Zhang, C.;Wu, X.; Su, N.; Xing, X. H. Chin. J. Biotech. 2012, 28, 393. [黄子亮, 张翀, 吴希, 苏楠,刑新会. 生物工程学报, 2012, 28, 393.]

    7. [7]

      (7) Hu, Y.; Liu,W. M.; Zou, B.; Tang, S. S.; Huang, H. Prog. Chem.2010, 22, 1656.

    8. [8]

      (8) Liu, P.; Xing, G.W.; Li, X.W.; Ye, Y. H. Acta Phys. -Chim. Sin.2010, 26, 1113. [刘平, 邢国文, 李宣文, 叶蕴华. 物理化学学报, 2010, 26, 1113.] doi: 10.3866/PKU.WHXB20100448

    9. [9]

      (9) Lei, Q. J.; Gao, B. J.; Zhang, Z. G. Acta Phys. -Chim. Sin. 2011,27, 2697. [雷青娟, 高保娇, 张正国. 物理化学学报, 2011, 27,2697.] doi: 10.3866/PKU.WHXB20111122

    10. [10]

      (10) Park, B.W.; Yoon, D. Y.; Kim, D. S. Biosens. Bioelectron. 2010,26, 1. doi: 10.1016/j.bios.2010.04.033

    11. [11]

      (11) Kato, M.; Inuzuka, K.; Sakai-Kato, K.; Toyo'oka, T. Anal. Chem.2005, 77, 1813. doi: 10.1021/ac048388u

    12. [12]

      (12) Knezevic, Z.; Milosavic, N.; Bezbradica, D.; Jakovljevic, Z.;Prodanovic, R. Biochem. Eng. J. 2006, 30, 269. doi: 10.1016/j.bej.2006.05.009

    13. [13]

      (13) Jung, Y.; Lee, J. M.; Jung, H.; Chung, B. H. Anal. Chem. 2007,79, 6534. doi: 10.1021/ac070484i

    14. [14]

      (14) Limoges, B.; Marchal, D.; Mavre, F.; Saveant, J. M. J. Am. Chem. Soc. 2006, 128, 2084. doi: 10.1021/ja0569196

    15. [15]

      (15) Chen, M. L.; Adak, A. K.; Yeh, N. C.; Yang,W. B.; Chuang, Y.J.;Wong, C. H.; Hwang, K. C.; Hwu, J. R. R.; Hsieh, S. L.; Lin,C. C. Angew. Chem. Int. Edit. 2008, 47, 8627. doi: 10.1002/anie.v47:45

    16. [16]

      (16) Rusmini, F.; Zhong, Z. Y.; Feijen, J. Biomacromolecules 2007,8, 1775. doi: 10.1021/bm061197b

    17. [17]

      (17) Turkova, J. J. Chromatogr. B 1999, 722, 11. doi: 10.1016/S0378-4347(98)00434-4

    18. [18]

      (18) Cao, L.; Chen, H. J. Chin. Biotechnol. 2003, 23, 22.

    19. [19]

      (19) Zhou,W.W.; Lian, J.; Hu, K. J.; Gao, Y. H.; Xu, B. Acta Phys. -Chim. Sin. 2010, 26, 2821. [周稳稳, 廉洁, 胡科家,高云华, 徐百. 物理化学学报, 2010, 26, 2821.] doi: 10.3866/PKU.WHXB20101016

    20. [20]

      (20) Zhou, J. Q.; Chen, S. H.;Wang, J.W. Chin. J. Biotech. 2008, 24,617. [周建芹, 陈韶华, 王剑文. 生物工程学报, 2008, 24,617.] doi: 10.1016/S1872-2075(08)60031-X

    21. [21]

      (21) Hernandez, K.; Fernandez-Lafuente, R. Enzyme Microb. Technol. 2011, 48, 107. doi: 10.1016/j.enzmictec.2010.10.003

    22. [22]

      (22) hlke, H.; Klebe, G. Angew. Chem. Int. Edit. 2002, 41, 2645.

    23. [23]

      (23) Huang, B.; Liu, F. F.; Dong, X. Y.; Sun, Y. J. Phys. Chem. B2011, 115, 4168. doi: 10.1021/jp111216g

    24. [24]

      (24) Huang, B.; Liu, F. F.; Dong, X. Y.; Sun, Y. J. Phys. Chem. B2012, 116, 424. doi: 10.1021/jp205770p

    25. [25]

      (25) Lin, D. Q.; Tong, H. F.;Wang, H. Y.; Yao, S. J. J. Phys. Chem. B2012, 116, 1393. doi: 10.1021/jp206817b

    26. [26]

      (26) Alonso, H.; Bliznyuk, A. A.; Gready, J. E. Med. Res. Rev. 2006,26, 531.

    27. [27]

      (27) Liu, F. F.; Dong, X. Y.;Wang, T.; Sun, Y. J. Chromatogr. A2007, 1175, 249. doi: 10.1016/j.chroma.2007.10.074

    28. [28]

      (28) Liu, F. F.;Wang, T.; Dong, X. Y.; Sun, Y. J. Chromatogr. A2007, 1146, 41. doi: 10.1016/j.chroma.2007.01.130

    29. [29]

      (29) Transue, T. R.; Krahn, J. M.; Gabel, S. A.; DeRose, E. F.;London, R. E. Biochemistry-us 2004, 43, 2829. doi: 10.1021/bi035782y

    30. [30]

      (30) Morris, G. M.; Huey, R.; Lindstrom,W.; Sanner, M. F.; Belew,R. K.; odsell, D. S.; Olson, A. J. J. Comput. Chem. 2009, 30,2785. doi: 10.1002/jcc.v30:16

    31. [31]

      (31) Dundas, J.; Ouyang, Z.; Tseng, J.; Binkowski, A.; Turpaz, Y.;Liang, J. Nucleic. Acids Res. 2006, 34,W116.

    32. [32]

      (32) Irwin, J. J.; Sterling, T.; Mysinger, M. M.; Bolstad, E. S.;Coleman, R. G. J. Chem. Inf. Model. 2012, 52, 1757.

    33. [33]

      (33) Morris, G. M.; odsell, D. S.; Halliday, R. S.; Huey, R.; Hart,W. E.; Belew, R. K.; Olson, A. J. J. Comput. Chem. 1998, 19,1639.

    34. [34]

      (34) Rarey, M.; Kramer, B.; Lengauer, T.; Klebe, G. J. Mol. Biol.1996, 261, 470. doi: 10.1006/jmbi.1996.0477

    35. [35]

      (35) Hess, B.; Kutzner, C.; van der Spoel, D.; Lindahl, E. J. Chem. Theory Comput. 2008, 4, 435. doi: 10.1021/ct700301q

    36. [36]

      (36) Van Gunsteren,W. F.; Billeter, S. R.; Eising, A. A.; Hünenberger,P. H.; Krüger, P.; Mark, A. E.; Scott,W. R. P.; Tironi, I. G. TheGROMOS96 Manual and User Guide. In Biomolecular Simulation; Zürich, Groninigen, 1996.

    37. [37]

      (37) Berendsen, H. J. C.; Postma, J. P. M.; van Gunsteren,W. F.;Hermans, J. In Intermolecular Forces; Pullman, B. Ed.; Reidel:Dordecht, holland, 1981, p 331.

    38. [38]

      (38) Hess, B.; Berendsen, H. J. C.; Fraaije, J. G. E. M. J. Comput. Chem. 1997, 18, 1463.

    39. [39]

      (39) Darden, T.; York, D.; Pedersen, L. J. Chem. Phys. 1993, 98,10089. doi: 10.1063/1.464397

    40. [40]

      (40) Beredsen, H. J. C.; Postma, J. P. M.; van Gunsteren,W. F.; DiNola, A.; Haak, J. R. J. Chem. Phys. 1984, 81, 3684. doi: 10.1063/1.448118

    41. [41]

      (41) Humphrey,W.; Dalke, A.; Schulten, K. J. Mol. Graph. 1996, 14,33. doi: 10.1016/0263-7855(96)00018-5

    42. [42]

      (42) Plewczynski, D.; Lazniewski, M.; Augustyniak, R.; Ginalski, K.J. Comput. Chem. 2011, 32, 742. doi: 10.1002/jcc.v32.4

    43. [43]

      (43) Lu, I. L.;Wang, H. J. Comput. Biol. 2012, 19, 1215. doi: 10.1089/cmb.2012.0188

    44. [44]

      (44) Li, X.; Li, Y.; Cheng, T. J.; Liu, Z. H.;Wang, R. X. J. Comput. Chem. 2010, 31, 2109. doi: 10.1002/jcc.v31:11

    45. [45]

      (45) Cheng, T. J.; Li, X.; Li, Y.; Liu, Z. H.;Wang, R. X. J. Chem. Inf. Model. 2009, 49, 1079. doi: 10.1021/ci9000053

    46. [46]

      (46) Huang, S. Y.; Grinter, S. Z.; Zou, X. Q. Phys. Chem. Chem. Phys. 2010, 12, 12899.

    47. [47]

      (47) Liu, F. F.; Ji, L.; Dong, X. Y. Acta Phys. -Chim. Sin. 2010, 26,2813. [刘夫锋, 纪络, 董晓燕. 物理化学学报, 2010, 26,2813.] doi: 10.3866/PKU.WHXB20101011

    48. [48]

      (48) Sun, H.; Jiang, Y. J.; Yu, Q. S.; Zou, J.W. Acta Phys. -Chim. Sin.2009, 25, 635. [孙浩, 蒋勇军, 俞庆森, 邹建卫. 物理化学学报, 2009, 25, 635.] doi: 10.3866/PKU.WHXB20090405

    49. [49]

      (49) Zhao, Y. S.; Zheng, Q. C.; Zhang, H. X.; Chu, H. Y.; Sun, C. C.Acta Phys. -Chim. Sin. 2009, 25, 417. [赵勇山, 郑清川, 张红星, 楚慧郢, 孙家钟. 物理化学学报, 2009, 25, 417.] doi: 10.3866/PKU.WHXB20090304

    50. [50]

      (50) Liu, F. F.; Dong, X. Y.; Sun, Y. J. Mol. Graph. Model. 2008, 27,421. doi: 10.1016/j.jmgm.2008.07.002

    51. [51]

      (51) Levy, Y.; Onuchic, J. N. Annu. Rev. Biophys. Biomol. Struct.2006, 35, 389. doi: 10.1146/annurev.biophys.35.040405.102134

    52. [52]

      (52) Liu, F. F.; Ji, L.; Dong, X. Y.; Sun, Y. J. Phys. Chem. B 2009,113, 11320. doi: 10.1021/jp905580j


  • 加载中
    1. [1]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    2. [2]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    3. [3]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    4. [4]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    5. [5]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    6. [6]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    7. [7]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    8. [8]

      Pingping Zhu Yongjun Xie Yuanping Yi Yu Huang Qiang Zhou Shiyan Xiao Haiyang Yang Pingsheng He . Excavation and Extraction of Ideological and Political Elements for the Virtual Simulation Experiments at Molecular Level: Taking the Project “the Simulation and Computation of Conformation, Morphology and Dimensions of Polymer Chains” as an Example. University Chemistry, 2024, 39(2): 83-88. doi: 10.3866/PKU.DXHX202309063

    9. [9]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    10. [10]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    11. [11]

      Lijun Huo Mingcun Wang Tianyi Zhao Mingjie Liu . Exploration of Undergraduate and Graduate Integrated Teaching in Polymer Chemistry with Aerospace Characteristics. University Chemistry, 2024, 39(6): 103-111. doi: 10.3866/PKU.DXHX202312059

    12. [12]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    13. [13]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    14. [14]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    15. [15]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    16. [16]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    17. [17]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    18. [18]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

    19. [19]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    20. [20]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

Metrics
  • PDF Downloads(1015)
  • Abstract views(985)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return