Citation: BAI Shu, ZHOU Rong, LIU Fu-Feng. Rational Design of Affinity Ligand for the Oriented Immobilization of Trypsin[J]. Acta Physico-Chimica Sinica, ;2013, 29(02): 439-448. doi: 10.3866/PKU.WHXB201211272 shu

Rational Design of Affinity Ligand for the Oriented Immobilization of Trypsin

  • Received Date: 20 September 2012
    Available Online: 27 November 2012

    Fund Project: 国家自然科学基金(20906068) (20906068)天津市应用基础与前沿技术研究计划项目(10JCYBJC04500)资助 (10JCYBJC04500)

  • Based on the three-dimensional (3D) structure of trypsin, 2-nitrophenyl-β-D-glucopyranoside was selected from the ZINC database to be a candidate affinity ligand for trypsin. The affinity between trypsin and the ligand was analyzed. It is found that the interactions between the ligand and the protein are dominated by van der Waals interactions and hydrogen bonding. Molecular dynamics (MD) simulations were used to verify the affinity between the ligand and trypsin; the simulations indicate that the complex remains stable, and the distance between the ligand and the target protein changes only a little. It is found that one water molecule acts as a bridge between the ligand and the protein pocket via hydrogen bonding. Finally, the ligand was coupled to Sepharose CL-6B gel, and was used to immobilize trypsin in an oriented fashion. It is found that the enzyme activity and specific activity of the oriented immobilized trypsin are 340.8 U·g-1 and 300.3 U·mg-1, respectively. These values are 10 and 5 times that of the free enzyme. The results of this work indicate that the combination of docking and MD simulations are promising for the rational design of ligands for oriented immobilization.

  • 加载中
    1. [1]

      (1) Bornscheuer, U. T.; Huisman, G.W.; Kazlauskas, R. J.; Lutz, S.;Moore, J. C.; Robins, K. Nature 2012, 485, 185. doi: 10.1038/nature11117

    2. [2]

      (2) Schmid, A.; Dordick, J. S.; Hauer, B.; Kiener, A.;Wubbolts, M.;Witholt, B. Nature 2001, 409, 258. doi: 10.1038/35051736

    3. [3]

      (3) Nestl, B. M.; Nebel, B. A.; Hauer, B. Curr. Opin. Chem. Biol.2011, 15, 187. doi: 10.1016/j.cbpa.2010.11.019

    4. [4]

      (4) Zhang, B.;Weng, Y.; Xu, H.; Mao, Z. Appl. Microbiol. Biotechnol. 2012, 93, 61. doi: 10.1007/s00253-011-3672-x

    5. [5]

      (5) Sheldon, R. A. Chem. Soc. Rev. 2012, 41, 1437. doi: 10.1039/c1cs15219j

    6. [6]

      (6) Huang, Z. L.; Zhang, C.;Wu, X.; Su, N.; Xing, X. H. Chin. J. Biotech. 2012, 28, 393. [黄子亮, 张翀, 吴希, 苏楠,刑新会. 生物工程学报, 2012, 28, 393.]

    7. [7]

      (7) Hu, Y.; Liu,W. M.; Zou, B.; Tang, S. S.; Huang, H. Prog. Chem.2010, 22, 1656.

    8. [8]

      (8) Liu, P.; Xing, G.W.; Li, X.W.; Ye, Y. H. Acta Phys. -Chim. Sin.2010, 26, 1113. [刘平, 邢国文, 李宣文, 叶蕴华. 物理化学学报, 2010, 26, 1113.] doi: 10.3866/PKU.WHXB20100448

    9. [9]

      (9) Lei, Q. J.; Gao, B. J.; Zhang, Z. G. Acta Phys. -Chim. Sin. 2011,27, 2697. [雷青娟, 高保娇, 张正国. 物理化学学报, 2011, 27,2697.] doi: 10.3866/PKU.WHXB20111122

    10. [10]

      (10) Park, B.W.; Yoon, D. Y.; Kim, D. S. Biosens. Bioelectron. 2010,26, 1. doi: 10.1016/j.bios.2010.04.033

    11. [11]

      (11) Kato, M.; Inuzuka, K.; Sakai-Kato, K.; Toyo'oka, T. Anal. Chem.2005, 77, 1813. doi: 10.1021/ac048388u

    12. [12]

      (12) Knezevic, Z.; Milosavic, N.; Bezbradica, D.; Jakovljevic, Z.;Prodanovic, R. Biochem. Eng. J. 2006, 30, 269. doi: 10.1016/j.bej.2006.05.009

    13. [13]

      (13) Jung, Y.; Lee, J. M.; Jung, H.; Chung, B. H. Anal. Chem. 2007,79, 6534. doi: 10.1021/ac070484i

    14. [14]

      (14) Limoges, B.; Marchal, D.; Mavre, F.; Saveant, J. M. J. Am. Chem. Soc. 2006, 128, 2084. doi: 10.1021/ja0569196

    15. [15]

      (15) Chen, M. L.; Adak, A. K.; Yeh, N. C.; Yang,W. B.; Chuang, Y.J.;Wong, C. H.; Hwang, K. C.; Hwu, J. R. R.; Hsieh, S. L.; Lin,C. C. Angew. Chem. Int. Edit. 2008, 47, 8627. doi: 10.1002/anie.v47:45

    16. [16]

      (16) Rusmini, F.; Zhong, Z. Y.; Feijen, J. Biomacromolecules 2007,8, 1775. doi: 10.1021/bm061197b

    17. [17]

      (17) Turkova, J. J. Chromatogr. B 1999, 722, 11. doi: 10.1016/S0378-4347(98)00434-4

    18. [18]

      (18) Cao, L.; Chen, H. J. Chin. Biotechnol. 2003, 23, 22.

    19. [19]

      (19) Zhou,W.W.; Lian, J.; Hu, K. J.; Gao, Y. H.; Xu, B. Acta Phys. -Chim. Sin. 2010, 26, 2821. [周稳稳, 廉洁, 胡科家,高云华, 徐百. 物理化学学报, 2010, 26, 2821.] doi: 10.3866/PKU.WHXB20101016

    20. [20]

      (20) Zhou, J. Q.; Chen, S. H.;Wang, J.W. Chin. J. Biotech. 2008, 24,617. [周建芹, 陈韶华, 王剑文. 生物工程学报, 2008, 24,617.] doi: 10.1016/S1872-2075(08)60031-X

    21. [21]

      (21) Hernandez, K.; Fernandez-Lafuente, R. Enzyme Microb. Technol. 2011, 48, 107. doi: 10.1016/j.enzmictec.2010.10.003

    22. [22]

      (22) hlke, H.; Klebe, G. Angew. Chem. Int. Edit. 2002, 41, 2645.

    23. [23]

      (23) Huang, B.; Liu, F. F.; Dong, X. Y.; Sun, Y. J. Phys. Chem. B2011, 115, 4168. doi: 10.1021/jp111216g

    24. [24]

      (24) Huang, B.; Liu, F. F.; Dong, X. Y.; Sun, Y. J. Phys. Chem. B2012, 116, 424. doi: 10.1021/jp205770p

    25. [25]

      (25) Lin, D. Q.; Tong, H. F.;Wang, H. Y.; Yao, S. J. J. Phys. Chem. B2012, 116, 1393. doi: 10.1021/jp206817b

    26. [26]

      (26) Alonso, H.; Bliznyuk, A. A.; Gready, J. E. Med. Res. Rev. 2006,26, 531.

    27. [27]

      (27) Liu, F. F.; Dong, X. Y.;Wang, T.; Sun, Y. J. Chromatogr. A2007, 1175, 249. doi: 10.1016/j.chroma.2007.10.074

    28. [28]

      (28) Liu, F. F.;Wang, T.; Dong, X. Y.; Sun, Y. J. Chromatogr. A2007, 1146, 41. doi: 10.1016/j.chroma.2007.01.130

    29. [29]

      (29) Transue, T. R.; Krahn, J. M.; Gabel, S. A.; DeRose, E. F.;London, R. E. Biochemistry-us 2004, 43, 2829. doi: 10.1021/bi035782y

    30. [30]

      (30) Morris, G. M.; Huey, R.; Lindstrom,W.; Sanner, M. F.; Belew,R. K.; odsell, D. S.; Olson, A. J. J. Comput. Chem. 2009, 30,2785. doi: 10.1002/jcc.v30:16

    31. [31]

      (31) Dundas, J.; Ouyang, Z.; Tseng, J.; Binkowski, A.; Turpaz, Y.;Liang, J. Nucleic. Acids Res. 2006, 34,W116.

    32. [32]

      (32) Irwin, J. J.; Sterling, T.; Mysinger, M. M.; Bolstad, E. S.;Coleman, R. G. J. Chem. Inf. Model. 2012, 52, 1757.

    33. [33]

      (33) Morris, G. M.; odsell, D. S.; Halliday, R. S.; Huey, R.; Hart,W. E.; Belew, R. K.; Olson, A. J. J. Comput. Chem. 1998, 19,1639.

    34. [34]

      (34) Rarey, M.; Kramer, B.; Lengauer, T.; Klebe, G. J. Mol. Biol.1996, 261, 470. doi: 10.1006/jmbi.1996.0477

    35. [35]

      (35) Hess, B.; Kutzner, C.; van der Spoel, D.; Lindahl, E. J. Chem. Theory Comput. 2008, 4, 435. doi: 10.1021/ct700301q

    36. [36]

      (36) Van Gunsteren,W. F.; Billeter, S. R.; Eising, A. A.; Hünenberger,P. H.; Krüger, P.; Mark, A. E.; Scott,W. R. P.; Tironi, I. G. TheGROMOS96 Manual and User Guide. In Biomolecular Simulation; Zürich, Groninigen, 1996.

    37. [37]

      (37) Berendsen, H. J. C.; Postma, J. P. M.; van Gunsteren,W. F.;Hermans, J. In Intermolecular Forces; Pullman, B. Ed.; Reidel:Dordecht, holland, 1981, p 331.

    38. [38]

      (38) Hess, B.; Berendsen, H. J. C.; Fraaije, J. G. E. M. J. Comput. Chem. 1997, 18, 1463.

    39. [39]

      (39) Darden, T.; York, D.; Pedersen, L. J. Chem. Phys. 1993, 98,10089. doi: 10.1063/1.464397

    40. [40]

      (40) Beredsen, H. J. C.; Postma, J. P. M.; van Gunsteren,W. F.; DiNola, A.; Haak, J. R. J. Chem. Phys. 1984, 81, 3684. doi: 10.1063/1.448118

    41. [41]

      (41) Humphrey,W.; Dalke, A.; Schulten, K. J. Mol. Graph. 1996, 14,33. doi: 10.1016/0263-7855(96)00018-5

    42. [42]

      (42) Plewczynski, D.; Lazniewski, M.; Augustyniak, R.; Ginalski, K.J. Comput. Chem. 2011, 32, 742. doi: 10.1002/jcc.v32.4

    43. [43]

      (43) Lu, I. L.;Wang, H. J. Comput. Biol. 2012, 19, 1215. doi: 10.1089/cmb.2012.0188

    44. [44]

      (44) Li, X.; Li, Y.; Cheng, T. J.; Liu, Z. H.;Wang, R. X. J. Comput. Chem. 2010, 31, 2109. doi: 10.1002/jcc.v31:11

    45. [45]

      (45) Cheng, T. J.; Li, X.; Li, Y.; Liu, Z. H.;Wang, R. X. J. Chem. Inf. Model. 2009, 49, 1079. doi: 10.1021/ci9000053

    46. [46]

      (46) Huang, S. Y.; Grinter, S. Z.; Zou, X. Q. Phys. Chem. Chem. Phys. 2010, 12, 12899.

    47. [47]

      (47) Liu, F. F.; Ji, L.; Dong, X. Y. Acta Phys. -Chim. Sin. 2010, 26,2813. [刘夫锋, 纪络, 董晓燕. 物理化学学报, 2010, 26,2813.] doi: 10.3866/PKU.WHXB20101011

    48. [48]

      (48) Sun, H.; Jiang, Y. J.; Yu, Q. S.; Zou, J.W. Acta Phys. -Chim. Sin.2009, 25, 635. [孙浩, 蒋勇军, 俞庆森, 邹建卫. 物理化学学报, 2009, 25, 635.] doi: 10.3866/PKU.WHXB20090405

    49. [49]

      (49) Zhao, Y. S.; Zheng, Q. C.; Zhang, H. X.; Chu, H. Y.; Sun, C. C.Acta Phys. -Chim. Sin. 2009, 25, 417. [赵勇山, 郑清川, 张红星, 楚慧郢, 孙家钟. 物理化学学报, 2009, 25, 417.] doi: 10.3866/PKU.WHXB20090304

    50. [50]

      (50) Liu, F. F.; Dong, X. Y.; Sun, Y. J. Mol. Graph. Model. 2008, 27,421. doi: 10.1016/j.jmgm.2008.07.002

    51. [51]

      (51) Levy, Y.; Onuchic, J. N. Annu. Rev. Biophys. Biomol. Struct.2006, 35, 389. doi: 10.1146/annurev.biophys.35.040405.102134

    52. [52]

      (52) Liu, F. F.; Ji, L.; Dong, X. Y.; Sun, Y. J. Phys. Chem. B 2009,113, 11320. doi: 10.1021/jp905580j


  • 加载中
    1. [1]

      Zhi Zhou Yu-E Lian Yuqing Li Hui Gao Wei Yi . New Insights into the Molecular Mechanism Behind Clinical Tragedies of “Cephalosporin with Alcohol”. University Chemistry, 2025, 40(3): 42-51. doi: 10.12461/PKU.DXHX202403104

    2. [2]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    3. [3]

      Zhenming Xu Yibo Wang Zhenhui Liu Duo Chen Mingbo Zheng Laifa Shen . Experimental Design of Computational Materials Science and Computational Chemistry Courses Based on the Bohrium Scientific Computing Cloud Platform. University Chemistry, 2025, 40(3): 36-41. doi: 10.12461/PKU.DXHX202403096

    4. [4]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    5. [5]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    6. [6]

      Yaping Li Sai An Aiqing Cao Shilong Li Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185

    7. [7]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    8. [8]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    9. [9]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    10. [10]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    11. [11]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    12. [12]

      Zhifang SUZongjie GUANYu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290

    13. [13]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    14. [14]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    15. [15]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    16. [16]

      Pingping Zhu Yongjun Xie Yuanping Yi Yu Huang Qiang Zhou Shiyan Xiao Haiyang Yang Pingsheng He . Excavation and Extraction of Ideological and Political Elements for the Virtual Simulation Experiments at Molecular Level: Taking the Project “the Simulation and Computation of Conformation, Morphology and Dimensions of Polymer Chains” as an Example. University Chemistry, 2024, 39(2): 83-88. doi: 10.3866/PKU.DXHX202309063

    17. [17]

      Lijun Huo Mingcun Wang Tianyi Zhao Mingjie Liu . Exploration of Undergraduate and Graduate Integrated Teaching in Polymer Chemistry with Aerospace Characteristics. University Chemistry, 2024, 39(6): 103-111. doi: 10.3866/PKU.DXHX202312059

    18. [18]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    19. [19]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    20. [20]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

Metrics
  • PDF Downloads(1015)
  • Abstract views(1024)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return