Citation: YAO Tong, ZHONG Bei-Jing. Chemical Kinetic Model for Auto-Ignition and Combustion of n-Decane[J]. Acta Physico-Chimica Sinica doi: 10.3866/PKU.WHXB201211271 shu

Chemical Kinetic Model for Auto-Ignition and Combustion of n-Decane

  • Received Date: 20 September 2012
    Available Online: 27 November 2012

    Fund Project: 国家自然科学基金(51036004)资助项目 (51036004)

  • A chemical kinetic model containing 46 species and 167 reactions was developed for the auto-ignition and combustion of n-decane. On the basis of a significant reduction of the mechanism proposed by Peters (118 species and 527 reactions)—where the reduction was achieved using reaction path analysis and a sensitivity analysis—the newly developed mechanism was obtained by correcting and improving some elementary reactions important for auto-ignition at lower temperatures and laminar flame speeds. When compared with experimental results, not only did the mechanism contain fewer species and reactions than other models, it could also predict the auto-ignition delay time at lower and higher temperatures and laminar flame speeds more precisely. The development of this model represents a significant step toward a global model that could be coupled with computational fluid dynamics.

  • 加载中
    1. [1]

      (1) Dagaut, P.; Cathonnet, M. Prog. Energ. Combust. 2006, 32 (1),48. doi: 10.1016/j.pecs.2005.10.003

    2. [2]

      (2) Dagaut, P.; Reuillon, M.; Boettner, J. C.; Cathonnet, M.Symposium (International) on Combustion 1994, 25 (1), 919.

    3. [3]

      (3) Wang, H. R.; Jin, J.;Wang, J. B.; Tan, N. X.; Li, X. Y. Chem. J. Chin. Univ. 2012, 33 (2), 341. [王慧汝, 金捷, 王静波, 谈宁馨, 李象远. 高等学校化学学报, 2012, 33 (2), 341.]

    4. [4]

      (4) Dagaut, P.; El Bakali, A.; Ristori, A. Fuel 2006, 85 (7–8), 944.

    5. [5]

      (5) Humer, S.; Frassoldati, A.; Granata, S.; Faravelli, T.; Ranzi, E.;Seiser, R.; Seshadri, K. Proc. Combust. Inst. 2007, 31 (1), 393.doi: 10.1016/j.proci.2006.08.008

    6. [6]

      (6) Honnet, S.; Seshadri, K.; Niemann, U.; Peters, N. Proc. Combust. Inst. 2009, 32 (1), 485. doi: 10.1016/j.proci.2008.06.218

    7. [7]

      (7) Strelkova, M. I.; Kirillov, I. A.; Potapkin, B. V.; Safonov, A. A.;Sukhanov, L. P.; Umanskiy, S. Y.; Deminsky, M. A.; Dean, A. J.;Varatharajan, B.; Tentner, A. M. Combust. Sci. Technol. 2008,180 (10-11), 1788. doi: 10.1080/00102200802258379

    8. [8]

      (8) Mawid, M.; Sekar, B. Development of a Detailed JP-8/Jet-AChemical Kinetic Mechanism for High Pressure Conditions inGas Turbine Combustors. In Combustion and Fuels; ASMETurbo. Expo. Barcelona, Spain, May 8-11, 2007.

    9. [9]

      (9) Violi, A.; Yan, S.; Eddings, E. G.; Sarofim, A. F.; Granata, S.;Faravelli, T.; Ranzi, E. Combust. Sci. Technol. 2002, 174 (11-12), 399. doi: 10.1080/00102200215080

    10. [10]

      (10) Colket, M.; Edwards, T.;Williams, S.; Cernansky, N. P.; Miller,D. L.; E lfopoulos, F.; Lindstedt, P.; Seshadri, K.; Dryer, F. L.;Law, C. K. Development of an Experimental Database and Kinetic Models for Surrogate Jet Fuels, 45th AIAAAerospaceSciences Meeting and Exhibit, Reno, Nevada, January 8-11,2007; Paper No. AIAA 2007-770.

    11. [11]

      (11) Westbrook, C. K.; Pitz,W. J.; Herbinet, O.; Curran, H. J.; Silke,E. J. Combust. Flame 2009, 156 (1), 181.

    12. [12]

      (12) Battin-Leclerc, F.; Fournet, R.; Glaude, P.; Judenherc, B.;Warth,V.; Côme, G.; Scacchi, G. Proc. Combust. Inst. 2000, 28 (2),1597. doi: 10.1016/S0082-0784(00)80557-3

    13. [13]

      (13) Douté, C.; Delfau, J. L.; Vovelle, C. Combust. Sci. Technol.1997, 130 (1-6), 269. doi: 10.1080/00102209708935746

    14. [14]

      (14) Zeppieri, S. P.; Klotz, S. D.; Dryer, F. L. Proc. Combust. Inst.2000, 28 (2), 1587. doi: 10.1016/S0082-0784(00)80556-1

    15. [15]

      (15) Zhao, Z.W.; Li, J.; Kazakov, A.; Dryer, F. L.; Zeppieri, S. P.Combust. Sci. Technol. 2005, 177 (1), 89.

    16. [16]

      (16) Lindstedt, R.; Maurice, L. J. Propul. Power 2000, 16 (2), 187.doi: 10.2514/2.5582

    17. [17]

      (17) Liu, J.W.; Xiong, S.W.; Ma, X. S.; Li, P.; Li, X. Y. J. Propul. Technol. 2012, 33 (1), 64. [刘建文, 熊生伟, 马雪松, 李萍,李象远. 推进技术, 2012, 33 (1), 64.]

    18. [18]

      (18) Bikas, G.; Peters, N. Combust. Flame 2001, 126 (1–2), 1456.

    19. [19]

      (19) Honnet, S.; Seshadri, K.; Peters, N. Surrogate Fuel for Kerosene; http://www.itv.rwth-aachen.de/fileadmin/downloads/.(accessed Oct 27, 2011)

    20. [20]

      (20) Zhukov, V. P.; Sechenov, V. A.; Starikovskii, A. Y. Combust. Flame 2008, 153(1-2), 130.

    21. [21]

      (21) Pfahl, U.; Fieweger, K.; Adomeit, G. Proc. Combust. Inst. 1996,26, 781.

    22. [22]

      (22) Kumar, K.; Sung, C. J. Combust. Flame 2007, 151 (1–2), 209.

    23. [23]

      (23) You, X.; E lfopoulos, F. N.;Wang, H. Proc. Combust. Inst.2009, 32 (1), 403. doi: 10.1016/j.proci.2008.06.041

    24. [24]

      (24) Ranzi, E.; Frassoldati, A.; Granata, S.; Faravelli, T. Ind. Eng. Chem. Res. 2005, 44, 5170.

    25. [25]

      (25) Nehse, M.;Warnatz, J.; Chevalier, C. Symposium (International) on Combustion 1996, 26, 773. doi: 10.1016/S0082-0784(96)80286-4

    26. [26]

      (26) Bowman, C. T.; Hanson, R. K.; Davidson, D. F.; et al.GRI-MECH Home Page. http://www.me.berkeley.edu/gri_mech/releases.html (accessed May 20, 2011)

    27. [27]

      (27) Kee, R. J.; Rupley, F. M.; Miller, J. A.; et al. CHEMKIN Release4.1; Reaction Design: San Die , CA, 2006.

    28. [28]

      (28) Ji, C.; Dames, E.;Wang, Y. L.;Wang, H.; E lfopoulos, F. N.Combust. Flame 2010, 157, 277. doi: 10.1016/j.combustflame.2009.06.011

    29. [29]

      (29) Kim, H. H.;Won, S. H.; Santner, J.; Chen, Z.; Ju, Y. Proc. Combust. Inst. in Press.


  • 加载中
    1. [1]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, doi: 10.3866/PKU.DXHX202308044

    2. [2]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, doi: 10.3866/PKU.DXHX202311093

    3. [3]

      Yaqian Duan Juan Su Meiyu Lin Yuxin Fang Wenyi Liang . Exploration of the Implementation Path of Ideological and Political Education in the “Dual-Track Teaching” Model: a Case Study of Analytical Chemistry Experiment. University Chemistry, doi: 10.3866/PKU.DXHX202307024

    4. [4]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, doi: 10.3866/PKU.DXHX202309052

    5. [5]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, doi: 10.12461/PKU.DXHX202403048

    6. [6]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, doi: 10.3866/PKU.DXHX202401074

    7. [7]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, doi: 10.3866/PKU.DXHX202309074

    8. [8]

      Ruming Yuan Pingping Wu Laiying Zhang Xiaoming Xu Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, doi: 10.3866/PKU.DXHX202311057

    9. [9]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, doi: 10.3866/PKU.DXHX202403028

    10. [10]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, doi: 10.3866/PKU.DXHX202310029

    11. [11]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, doi: 10.12461/PKU.DXHX202406012

    12. [12]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, doi: 10.3866/PKU.DXHX202309053

    13. [13]

      Jiageng Li Putrama . 数值积分耦合非线性最小二乘法一步确定反应动力学参数. University Chemistry, doi: 10.12461/PKU.DXHX202407098

    14. [14]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202309003

    15. [15]

      Jiajie Cai Chang Cheng Bowen Liu Jianjun Zhang Chuanjia Jiang Bei Cheng . CdS/DBTSO-BDTO S型异质结光催化制氢及其电荷转移动力学. Acta Physico-Chimica Sinica, doi: 10.1016/j.actphy.2025.100084

    16. [16]

      Zhenli Sun Ning Wang Kexin Lin Qin Dai Yufei Zhou Dandan Cao Yanfeng Dang . Visual Analysis of Hotspots and Development Trends in Analytical Chemistry Education Reform. University Chemistry, doi: 10.12461/PKU.DXHX202403095

    17. [17]

      Zhening Lou Quanxing Mao Xiaogeng Feng Lei Zhang Xu Xu Yuyang Zhang Xueyan Liu Hongling Kang Dongyang Feng Yongku Li . Practice of Implementing Blended Teaching in Shared Analytical Chemistry Course. University Chemistry, doi: 10.3866/PKU.DXHX202308089

    18. [18]

      Yan Zhang Ping Wang Tiebo Xiao Futing Zi Yunlong Chen . Measures for Ideological and Political Construction in Analytical Chemistry Curriculum. University Chemistry, doi: 10.3866/PKU.DXHX202401017

    19. [19]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202406027

    20. [20]

      Xiaohui Li Ze Zhang Jingyi Cui Juanjuan Yin . Advanced Exploration and Practice of Teaching in the Experimental Course of Chemical Engineering Thermodynamics under the “High Order, Innovative, and Challenging” Framework. University Chemistry, doi: 10.3866/PKU.DXHX202311027

Metrics
  • PDF Downloads(1272)
  • Abstract views(1337)
  • HTML views(37)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return