Citation: ZHAN Wei-Shen, LI Rui, PAN Shi, GUO Ying-Nan, ZHANG Yi. Extension of Conjugate π Bridge in Dye Molecules for Dye-Sensitized Solar Cells[J]. Acta Physico-Chimica Sinica, ;2013, 29(02): 255-262. doi: 10.3866/PKU.WHXB201211221 shu

Extension of Conjugate π Bridge in Dye Molecules for Dye-Sensitized Solar Cells

  • Received Date: 7 August 2012
    Available Online: 22 November 2012

    Fund Project: 国家自然科学基金(10974025, 61137005)资助项目 (10974025, 61137005)

  • Taking dye D5 molecules as the prototype, different types and different elemental quantities of conjugate π bridge was used to design D-π-A organic molecules. Density functional theory (DFT) and timedependent density functional theory (TDDFT) were adopted to simulate the geometric structures, molecular orbital energy levels, and UV-Vis absorption spectra of the molecules, with the aim of finding conjugate π bridge in the sensitizer molecules for dye-sensitized solar cells (DSSCs). The absorption spectra of the molecules using “methenyl chains”,“furan rings” or “thiophene rings”,“methenyl chains and furan rings”, or “methenyl chains and thiophene rings” as conjugate π bridge showed a gradually increasing red-shifting trend. With increases in the number of conjugate π bridge elements, the absorption spectrum showed an intense red-shift, which weakened gradually; under the same conditions, the lowest unoccupied molecular orbital (LUMO) energy level of the molecules gradually decreased, and the highest occupied molecular orbital (HOMO) energy level gradually increased. The HOMO energy levels of the molecules with three“methenyl chain and furan ring”or“methenyl chain and thiophene ring”elements as conjugate π bridge were higher than the energy level of the redox electrolyte; in polar solutions, the HOMO energy levels of the molecules adopting two “methenyl chain and furan ring” or “methenyl chain and thiophene ring” elements as conjugate π bridge were higher than the energy level of the redox electrolyte. The absorption spectra of the organic sensitizer molecules with several “methenyl chain and furan ring” or “methenyl chain and thiophene ring” elements as conjugate π bridge showed an intense red-shift. These results showed that for DSSCs sensitizer molecules, it is not necessary to have many conjugate π bridge elements; one to two elements is typically enough.

  • 加载中
    1. [1]

      (1) O'Regan, B.; Grätzel, M. Nature 1991, 353, 737. doi: 10.1038/353737a0

    2. [2]

      (2) Grätzel, M. J. Photochem. Photobiol. C 2003, 4, 145. doi: 10.1016/S1389-5567(03)00026-1

    3. [3]

      (3) Grätzel, M. J. Photochem. Photobiol. A 2004, 164, 3. doi: 10.1016/j.jphotochem.2004.02.023

    4. [4]

      (4) Nazeeruddin, M. K.; Klein, C.; Liska, P.; Grätzel, M. Coord.Chem. Rev. 2005, 249, 1460. doi: 10.1016/j.ccr.2005.03.025

    5. [5]

      (5) Grätzel, M. Inorg. Chem. 2005, 44, 6841.

    6. [6]

      (6) Peter, L. M. Phys. Chem. Chem. Phys. 2007, 9, 2630.

    7. [7]

      (7) Wang, Z. S.; Cui, Y.; Dan-oh, Y.; Kasada, C.; Shinpo, A.; Hara,K. J. Phys. Chem. C 2007, 111, 7224. doi: 10.1021/jp067872t

    8. [8]

      (8) Chen, R.; Yang, X.; Tian, H.; Sun, L. J. Photochem. Photobiol.A: Chem. 2007, 189, 295. doi: 10.1016/j.jphotochem.2007.02.018

    9. [9]

      (9) Tian, H.; Yang, X.; Chen, R.; Pan, Y.; Li, L.; Hagfeldt, A.; Sun,L. Chem. Commun. 2007, 3741.

    10. [10]

      (10) Kim, S.; Kim, D.; Choi, H.; Kang, M. S.; Song, K.; Kang, S. O.;Ko, J. Chem. Commun. 2008, 4951.

    11. [11]

      (11) Ito, S.; Miura, H.; Uchida, S.; Takata, M.; Sumioka, K.; Liska,P.; Comte, P.; Péchy, P.; Grätzel, M. Chem. Commun. 2008,5194.

    12. [12]

      (12) Li, C.; Yum, J. H.; Moon, S. J.; Herrmann, A.; Eickemeyer, F.;Pschirer, N. G.; Erk, P.; Schöneboom, J.; Müllen, K.; Grätzel,M.; Nazeeruddin, M. K. ChemSusChem 2008, 1, 615. doi: 10.1002/cssc.v1:7

    13. [13]

      (13) Jin, Y.; Hua, J.;Wu,W.; Ma, X.; Meng, F. Synth. Met. 2008,158, 64.

    14. [14]

      (14) Burke, A.; Ito, S.; Snaith, H.; Bach, U.; Kwiatkowski, J.; andGrtzel, M. Nano lett. 2008, 8, 977. doi: 10.1021/nl071588b

    15. [15]

      (15) Chen, Z.; Li, F.; Huang, C. H. Curr. Org. Chem. 2007, 11, 1241.doi: 10.2174/138527207781696008

    16. [16]

      (16) Rochford, J.; Chu, D.; Hagfeldt, A.; Galoppini, E. J. Am. Chem.Soc. 2007, 129, 4655. doi: 10.1021/ja068218u

    17. [17]

      (17) Tsai, M. S.; Hsu, Y. C.; Lin, J. T.; Chen, H. C.; Hsu, C. P.J. Phys. Chem. C 2007, 111, 18785. doi: 10.1021/jp075653h

    18. [18]

      (18) Chen, R.; Yang, X.; Tian, H.;Wang, X.; Hagfeldt, A.; Sun, L. C.Chem. Mater. 2007, 19, 4007 doi: 10.1021/cm070617g

    19. [19]

      (19) Choi, H.; Lee, J. K.; Song, K. H.; Song, K.; Kang, S. O.; Ko, J.Tetrahedron 2007, 63, 1553. doi: 10.1016/j.tet.2006.12.013

    20. [20]

      (20) Park, J. K.; Lee, H. R.; Chen, J.; Shinokubo, H.; Osuka, A.;Kim, D. J. Phys. Chem. C 2008, 112, 16691. doi: 10.1021/jp804258q

    21. [21]

      (21) Eu, S. H.; Hayashi, S.; Umeyama, T.; Matano, Y.; Araki, Y.;Imahori, H. J. Phys. Chem. C 2008, 112, 4396. doi: 10.1021/jp710400p

    22. [22]

      (22) Yen, Y. S.; Hsu, Y. C.; Lin, J. T.; Chang, C.W.; Hsu, C. P.; Yin,D. J. J. Phys. Chem. C 2008, 112, 12557. doi: 10.1021/jp801036s

    23. [23]

      (23) Li, G.; Jiang, K. J.; Li, Y. F.; Li, S. L.; Yang, L. M. J. Phys.Chem. C 2008, 112, 11591. doi: 10.1021/jp802436v

    24. [24]

      (24) Balanay, M. P.; Kim, D. H. Phys. Chem. Chem. Phys. 2008, 10,5121.

    25. [25]

      (25) Ooyama, Y.; Harima, Y. Eur. J. Org. Chem. 2009, 18, 2903.

    26. [26]

      (26) Marinado, T.; Hagberg, D. P.; Hedlund, M.; Edvinsson, T.;Johansson, E. M. J.; Boschloo, G.; Rensmo, H.; Brinck, T.; Sun,L. C.; Hagfeldty, A. Phys. Chem. Chem. Phys. 2009, 11, 133.

    27. [27]

      (27) Kurashige, Y.; Nakajima, T.; Kurashige, S.; Hirao, K.;Nishikitani, Y. J. Phys. Chem. A 2007, 111, 5544. doi: 10.1021/jp0720688

    28. [28]

      (28) Zhang, X.; Zhang, J. J.; Xia, Y. Y. J. Photochem. Photobiol. A:Chem. 2008, 194, 167. doi: 10.1016/j.jphotochem.2007.08.004

    29. [29]

      (29) Sayama, K.; Tsuka shi, S.; Mori, T.; Hara, K.; Ohga, Y.;Shinpo, A.; Abe, Y.; Suga, S.; Arakawa, H. Sol. Energy Mater.Sol. Cells 2003, 80, 47. doi: 10.1016/S0927-0248(03)00113-2

    30. [30]

      (30) Zhao, G. J.; Chen, R. K.; Sun, M. T.; Liu, J. Y.; Li, G. Y.; Gao,Y. L.; Han, K. L.; Yang, X. C.; Sun, L. C. Chem. Eur. J. 2008,14, 6935. doi: 10.1002/chem.v14:23

    31. [31]

      (31) Zhao, G. J.; Liu, J. Y.; Zhou, L. C.; Han, K. L. J. Phys. Chem. B2007, 111, 8940. doi: 10.1021/jp0734530

    32. [32]

      (32) Zhao, G. J.; Han, K. L. Biophys. J. 2008, 94, 38. doi: 10.1529/biophysj.107.113738

    33. [33]

      (33) Hagberg, D. P.; Edvinsson, T.; Marinado, T.; Boschloo, G.;Hagfeldt, A.; Sun, L. C. Chem. Commun. 2006, 2245.

    34. [34]

      (34) Hagberg, D. P.; Yum, J. H.; Lee, H.; Angelis, F. D.; Marinado,T.; Karlsson, K. M.; Humphry-Baker, R.; Sun, L.; Hagfeldt, A.;Grätzel, M.; Nazeeruddin, M. K. J. Am. Chem. Soc. 2008, 130,6259. doi: 10.1021/ja800066y

    35. [35]

      (35) Zhang, C. R.; Liu, Z. J.; Chen, Y. H.; Chen, H. S.;Wu, Y. Z.;Yuan, L. H. J. Mol. Struct. -Theochem 2009, 899, 86. doi: 10.1016/j.theochem.2008.12.015

    36. [36]

      (36) Boschloo, G.; Marinado, T.; Nonomura, K.; Edvinsson, T.;Agrios, A. G.; Hagberg, D. P.; Sun, L. C.; Quintana, M.;Karthikeyan, C. S.; Thelakkat, M.; Hagfeldt, A. Thin SolidFilms 2008, 516, 7214. doi: 10.1016/j.tsf.2007.12.035

    37. [37]

      (37) Agrios, A. G.; Hagfeldt, A. J. Phys. Chem. C 2008, 112, 10021.doi: 10.1021/jp800900x

    38. [38]

      (38) Lin, J. T.; Chen, P. C.; Yen, Y. S.; Hsu, Y. C.; Chou, H. H.; Yeh,M. C. P. Organic Letters 2009, 11, 97. doi: 10.1021/ol8025236

    39. [39]

      (39) De Angelis, F.; Fantacci, S.; Selloni, A.; Nazeeruddin, M. K.Chem. Phys. Lett. 2005, 415, 115. doi: 10.1016/j.cplett.2005.08.044

    40. [40]

      (40) Xu, Y.; Chen,W. K.; Cao, M. J.; Liu, S. H.; Li, J. Q.;Philippopoulos, A. I.; Falaras, P. Chem. Phys. 2006, 330, 204.doi: 10.1016/j.chemphys.2006.08.012

    41. [41]

      (41) Sun, J.; Song, J.; Zhao, Y.; Liang,W. Z. J. Chem. Phys. 2007,127, 234107. doi: 10.1063/1.2805396

    42. [42]

      (42) Wang, Y. L.;Wu, G. S. Acta Phys. -Chim. Sin. 2008, 24, 552.[王溢磊, 吴国是. 物理化学学报, 2008, 24, 552.] doi: 10.1016/S1872-1508(08)60021-2

    43. [43]

      (43) Li, H. X.; Pan, S. J.;Wang, X. F.; Xiao, T. Chin. J. Chem. Phys.2008, 21, 263. doi: 10.1088/1674-0068/21/03/263-269

    44. [44]

      (44) Zhang, C. R.;Wu, Y. Z.; Chen, Y. H.; Chen, H. S. ActaPhys. -Chim. Sin. 2009, 25, 53. [张材荣, 吴有智, 陈玉红,陈宏善. 物理化学学报, 2009, 25, 53.] doi: 10.3866/PKU.WHXB20090110

    45. [45]

      (45) Zhan,W. S.; Pan, S.; Li, Y. Z.; Chen, M. D. Acta Phys. -Chim.Sin. 2009, 25, 2087. [詹卫伸, 潘石, 李源作, 陈茂笃. 物理化学学报, 2009, 25, 2087.] doi: 10.3866/PKU.WHXB20090925

    46. [46]

      (46) Zhan,W. S.; Pan, S.;Wang, Q.; Li, H.; Zhang, Y. ActaPhys. -Chim. Sin. 2012, 28, 78. [詹卫伸, 潘石, 王乔,李宏, 张毅. 物理化学学报, 2012, 28, 78.] doi: 10.3866/PKU.WHXB20122878

    47. [47]

      (47) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B. et al. Gaussian 03,Revision C.02; Gaussian Inc: Pittsburgh, PA, 2003.

    48. [48]

      (48) Becke, A. D. J. Chem. Phys. 1993, 98, 1372. doi: 10.1063/1.464304

    49. [49]

      (49) Becke, A. D. J. Chem. Phys. 1993, 98, 5648. doi: 10.1063/1.464913

    50. [50]

      (50) Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J.J. Phys. Chem. 1994, 98, 11623. doi: 10.1021/j100096a001

    51. [51]

      (51) Bene, J. E. D.; Person,W. B.; Szczepaniak, K. J. Phys. Chem.1995, 99, 10705. doi: 10.1021/j100027a005

    52. [52]

      (52) Hertwig, R. H.; Koch,W. Chem. Phys. Lett. 1997, 268, 345. doi: 10.1016/S0009-2614(97)00207-8

    53. [53]

      (53) Tozer, D. J.; Handy, N. C. J. Chem. Phys. 1998, 109, 10180. doi: 10.1063/1.477711

    54. [54]

      (54) Yanai, T.; Tew, D. P.; Handy, N. C. Chem. Phys. Lett. 2004, 393,51. doi: 10.1016/j.cplett.2004.06.011

    55. [55]

      (55) Barone, V.; Cossi, M. J. Phys. Chem. A 1998, 102, 1995. doi: 10.1021/jp9716997

    56. [56]

      (56) Klamt, A. J. Phys. Chem. 1995, 99, 2224. doi: 10.1021/j100007a062

    57. [57]

      (57) Klamt, A. J. Phys. Chem. 1996, 100, 3349. doi: 10.1021/jp950607f

    58. [58]

      (58) Reed, A. E.;Weinstock, R. B.;Weinhold, F. J. Chem. Phys.1985, 83, 735. doi: 10.1063/1.449486

    59. [59]

      (59) Cossi, M.; Rega, N.; Scalmani, G.; Barone, V. J. Comput. Chem.2003, 24, 669. doi: 10.1002/jcc.10189


  • 加载中
    1. [1]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    2. [2]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    3. [3]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    4. [4]

      Keweiyang Zhang Zihan Fan Liyuan Xiao Haitao Long Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084

    5. [5]

      Yipeng Zhou Chenxin Ran Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096

    6. [6]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    7. [7]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    8. [8]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    9. [9]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    10. [10]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    11. [11]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    12. [12]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    13. [13]

      Yongpo Zhang Xinfeng Li Yafei Song Mengyao Sun Congcong Yin Chunyan Gao Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092

    14. [14]

      Conghao Shi Ranran Wang Juli Jiang Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034

    15. [15]

      Tao Wen Tao Zhang Changguo Sun Jinyu Liu . Preparation of Dess-Martin Reagent and Its Application in Oxidizing Cyclohexanol. University Chemistry, 2024, 39(5): 20-26. doi: 10.3866/PKU.DXHX202309055

    16. [16]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    17. [17]

      Hongling Yuan Jialin Xie Jiawei Wang Jixiang Zhao Jiayan Liu Qing Feng Wei Qi Min Liu . Cyclic Olefin Copolymer (COC): The Agile Vanguard in the Realm of Materials. University Chemistry, 2024, 39(7): 294-298. doi: 10.12461/PKU.DXHX202311041

    18. [18]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    19. [19]

      Hong Zheng Xin Peng Chunwang Yi . The Tale of Caprolactam Cyclic Oligomers: The Ever-changing Life of “Princess Cyclo”. University Chemistry, 2024, 39(9): 40-47. doi: 10.12461/PKU.DXHX202403058

    20. [20]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

Metrics
  • PDF Downloads(763)
  • Abstract views(1362)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return