Citation: FAN Hai-Ming, ZHANG Yi-Nuo, ZHANG Jin, WANG Dong-Ying, GAO Jian-Bo, KANG Wan-Li, MENG Xiang-Can, ZHAO Jian, XU Hai. Dynamic Surface Adsorption Properties of Sodium Dodecyl Sulfate Aqueous Solution[J]. Acta Physico-Chimica Sinica, ;2013, 29(02): 351-357. doi: 10.3866/PKU.WHXB201211214
-
The dynamic surface adsorption properties of aqueous sodium dodecyl sulfate (SDS) solutions were investigated at different concentrations of NaCl using bubble pressure tensiometry MPTC. In the case of ionic surfactants, the existence of a diffuse electric double layer on the surface adsorption layer and around the micelle produces a surface charge. Here, we discuss the influence of the surface charge on the dynamic surface diffusion processes and the micelle properties. It was found that the SDS adsorption process occurred in the presence of a 5.5 kJ·mol-1 adsorption barrier (Ea) that was generated by the surface charge; this barrier significantly decreased the effective diffusion coefficient (Deff) of the dodecyl sulfate ions (DS-). The ratio of the effective diffusion coefficient to the monomer self-diffusion coefficient (D) (Deff/D) was only 0.013. This indicated that at the beginning, the adsorption of SDS followed the mixed kinetic-diffusion controlled model; this is different from the behavior observed for nonionic surfactants. The adsorption barrier was reduced when NaCl was added. Ea was less than 0.3 kJ·mol-1 after the addition of 80 mmol·L-1 of NaCl. This resulted in values of between 0.8 and 1.2 for Deff/D, which was consistent with the diffusion-controlled model that describes the behavior of nonionic surfactants. The characteristic constants for the micelle dissociation rate (k2) were determined from the dynamic surface tension of the SDS micelle solutions. The calculated k values decreased as the NaCl concentration was increased, which demonstrated the existence of surface charge on the SDS micelles; this surface charge increased the repulsive forces between the dodecyl sulfate ions, and promoted the dispersion of the micelles.
-
-
[1]
(1) Rosen, M. J. Surfactant and Interfacial Phenomena; JohnWileyand Sons: New York, 1989.
-
[2]
(2) Aveyard, R.; Haydon, D. A. An Introduction to the Principles of Surface Chemistry; Cambridge Univ. Press: London, 1973.
-
[3]
(3) Myers, D. In Surfactant Science Series; Reiger, M. M., Rhein,L. D. Eds.; Marcal Dekker: New York, 1997; Vol. 68, pp 29-82.
-
[4]
(4) Zhao, F. L. Principles of Enhanced Oil Recovery; ChinaUniversity of Petroleum Press: Dongying, 2006; pp 1-2.[赵福麟. EOR原理. 东营: 石油大学出版社, 2006:1-2.]
-
[5]
(5) McClements, D. J. Food Emulsions: Principles, Practice and Technology; CRC Press: Boca Raton, Florida, 2005.
-
[6]
(6) Fan, H. M.; Han, F.; Liu, Z.; Qin, L.; Li, Z. C.; Liang, D. H.;Ke, F. Y.; Huang, J. B.; Fu, H. L. J. Colloid Interface Sci. 2008,321, 227.
-
[7]
(7) Han, X.; Cheng, X. H.;Wang, J.; Huang, J. B. Acta Phys. -Chim. Sin. 2012, 28, 146. [韩霞, 程新皓, 王江,黄建滨. 物理化学学报, 2012, 28, 146.] doi: 10.3866/PKU.WHXB201228146
-
[8]
(8) Valentini, J. E.; Thomas,W. R.; Sevenhuysen, P.; Jiang, T. S.;Lee, H. O.; Yi, L.; Yen, S. C. Ind. Eng. Chem. Res. 1991, 30,453. doi: 10.1021/ie00051a004
-
[9]
(9) Knoche, M.; Tamura, H.; Bukovac, M. J. J. Agric. Food Chem.1991, 39, 202. doi: 10.1021/jf00001a041
-
[10]
(10) Tang, X. L.; Dong, J. F.; Li, X. F. J. Colloid Interface Sci. 2008,325, 223. doi: 10.1016/j.jcis.2008.05.055
-
[11]
(11) Zhang, L.; Luo, L.; Zhao, S.; Xu, Z. C.; An, J. Y.; Yu, J. Y.J. Petro. Sci. Eng. 2004, 41, 189. doi: 10.1016/S0920-4105(03)00153-0
-
[12]
(12) Zhao, Z. K.; Li, Z. S.; Zhao, S.; Qiao,W. H.; Cheng, L. B.Colloids Surf. A: Physicochem. Eng. Aspects 2005, 259, 71.doi: 10.1016/j.colsurfa.2005.02.012
-
[13]
(13) Marinova, K. G.; Basheva, E. S.; Nenova, B.; Temelska, M.;Mirarefi, A.Y. Food Hydrocolloids 2009, 23, 1864. doi: 10.1016/j.foodhyd.2009.03.003
-
[14]
(14) Chang, C. H.; Franses, E. I. Colloids Surf. A: Physicochem. Eng. Aspects 1995, 100, 1. doi: 10.1016/0927-7757(94)03061-4
-
[15]
(15) Eastoe, J.; Dalton, J. S.; Rogueda, P. G. A.; Crooks, E. R.; Pitt,A. R.; Simister, E. A. J. Colloid Interface Sci. 1997, 188, 423.doi: 10.1006/jcis.1997.4778
-
[16]
(16) Ferrari, M.; Liggerieri, L.; Ravera, F. J. Phys. Chem. B 1998,102, 10521. doi: 10.1021/jp9827429
-
[17]
(17) Liggieri, L.; Ferrari, M.; Massa, A.; Francesca, F.; Ravera, F.Colloids Surf. A: Physicochem. Eng. Aspects 1999, 156, 455.doi: 10.1016/S0927-7757(99)00103-X
-
[18]
(18) Eastoe, J.; Dalton, J. S. Adv. Colloid Interface Sci. 2000, 85,103. doi: 10.1016/S0001-8686(99)00017-2
-
[19]
(19) Chatterjee, A.; Moulik, S. P.; Sanyal, S. K.; Mishra, B. K.; Puri,P. M. J. Phys. Chem. B 2001, 105, 12823. doi: 10.1021/jp0123029
-
[20]
(20) Ward, A. F. H.; Tordai, L. J. J. Chem. Phys. 1946, 14, 453. doi: 10.1063/1.1724167
-
[21]
(21) Zhao, G. X.; Zhu, B. Y. Principles of Surfactant Action; Chinalight Industry Press: Beijing, 2003, pp 119-122. [赵国玺,朱瑶. 表面活性剂作用原理. 北京: 中国轻工业出版社,2003: 119-122.]
-
[22]
(22) Kamenka, N.; Lindman, B.; Brun, B. Colloid Polym. Sci. 1974,252, 144. doi: 10.1007/BF01555539
-
[23]
(23) Ravera, F.; Liggieri, L.; Steinchen, A. J. Colloid Interface Sci.1993, 156, 109 doi: 10.1006/jcis.1993.1088
-
[24]
(24) Liggieri, L.; Ravera, F.; Passerone, A. Colloids Surf. A: Physicochem. Eng. Aspects 1996, 114, 351. doi: 10.1016/0927-7757(96)03650-3
-
[25]
(25) Noskov, B.A. Adv. Colloid Interface Sci. 2002, 95, 237. doi: 10.1016/S0001-8686(00)00085-3
-
[26]
(26) Joos, P.; Rillaerts, E. J. Phys. Chem. 1982, 86, 3471. doi: 10.1021/j100214a040
-
[27]
(27) Makievski, A. V.; Fainerman, V. B.; Joos, P. J. Colloid Interface Sci. 1994, 166, 6. doi: 10.1006/jcis.1994.1264
-
[28]
(28) Aniannson, E.;Wall, S. N.; Almgren, M.; Hoffmann, H.;Kielmann, I.; Ulbricht,W.; Zana, R.; Lang, J.; Tondre, C.J. Phys. Chem. 1976, 80, 905. doi: 10.1021/j100550a001
-
[29]
(29) Tondre, C.; Zana, R. J. Colloid Interface Sci. 1978, 66, 544. doi: 10.1016/0021-9797(78)90074-7
-
[30]
(30) Ulbricht,W.; Zana, R. Colloids Surf. A: Physicochem. Eng. Aspects 2001, 183 -185, 487.
-
[1]
-
-
[1]
Ruilin Han , Xiaoqi Yan . Comparison of Multiple Function Methods for Fitting Surface Tension and Concentration Curves. University Chemistry, 2024, 39(7): 381-385. doi: 10.3866/PKU.DXHX202311023
-
[2]
Honglian Liang , Xiaozhe Kuang , Fuping Wang , Yu Chen . Exploration and Practice of Integrating Ideological and Political Education into Physical Chemistry: a Case on Surface Tension and Gibbs Free Energy. University Chemistry, 2024, 39(10): 433-440. doi: 10.12461/PKU.DXHX202405073
-
[3]
Yongmin Zhang , Shuang Guo , Mingyue Zhu , Menghui Liu , Sinong Li . Design and Improvement of Physicochemical Experiments Based on Problem-Oriented Learning: a Case Study of Liquid Surface Tension Measurement. University Chemistry, 2024, 39(2): 21-27. doi: 10.3866/PKU.DXHX202307026
-
[4]
Xinting XIONG , Zhiqiang XIONG , Panlei XIAO , Xuliang NIE , Xiuying SONG , Xiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145
-
[5]
Zizheng LU , Wanyi SU , Qin SHI , Honghui PAN , Chuanqi ZHAO , Chengfeng HUANG , Jinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225
-
[6]
Xinlong WANG , Zhenguo CHENG , Guo WANG , Xiaokuen ZHANG , Yong XIANG , Xinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259
-
[7]
Weihan Zhang , Menglu Wang , Ankang Jia , Wei Deng , Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043
-
[8]
Zhuomin Zhang , Hanbing Huang , Liangqiu Lin , Jingsong Liu , Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034
-
[9]
Yukai Jiang , Yihan Wang , Yunkai Zhang , Yunping Wei , Ying Ma , Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033
-
[10]
Lan Ma , Cailu He , Ziqi Liu , Yaohan Yang , Qingxia Ming , Xue Luo , Tianfeng He , Liyun Zhang . Magical Surface Chemistry: Fabrication and Application of Oil-Water Separation Membranes. University Chemistry, 2024, 39(5): 218-227. doi: 10.3866/PKU.DXHX202311046
-
[11]
Zhaomei LIU , Wenshi ZHONG , Jiaxin LI , Gengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404
-
[12]
Congying Lu , Fei Zhong , Zhenyu Yuan , Shuaibing Li , Jiayao Li , Jiewen Liu , Xianyang Hu , Liqun Sun , Rui Li , Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097
-
[13]
Xinyu ZENG , Guhua TANG , Jianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374
-
[14]
Liang MA , Honghua ZHANG , Weilu ZHENG , Aoqi YOU , Zhiyong OUYANG , Junjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075
-
[15]
Yangrui Xu , Yewei Ren , Xinlin Liu , Hongping Li , Ziyang Lu . 具有高传质和亲和表面的NH2-UIO-66基疏水多孔液体用于增强CO2光还原. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-. doi: 10.3866/PKU.WHXB202403032
-
[16]
Chunai Dai , Yongsheng Han , Luting Yan , Zhen Li , Yingze Cao . Preparation of Superhydrophobic Surfaces and Their Application in Oily Wastewater Treatment: Design of a Comprehensive Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(2): 34-40. doi: 10.3866/PKU.DXHX202307081
-
[17]
Yanhui Sun , Junmin Nan , Guozheng Ma , Xiaoxi Zuo , Guoliang Li , Xiaoming Lin . Exploration and Teaching Practice of Ideological and Political Elements in Interface Physical Chemistry: Taking “Additional Pressure on Curved Surfaces” as an Teaching Example. University Chemistry, 2024, 39(11): 20-27. doi: 10.3866/PKU.DXHX202402023
-
[18]
Cheng PENG , Jianwei WEI , Yating CHEN , Nan HU , Hui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282
-
[19]
Heng Chen , Longhui Nie , Kai Xu , Yiqiong Yang , Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019
-
[20]
Liyang ZHANG , Dongdong YANG , Ning LI , Yuanyu YANG , Qi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079
-
[1]
Metrics
- PDF Downloads(895)
- Abstract views(1567)
- HTML views(67)