Citation:
HONG Xiao-Ting, WU Xiao-Hui, MO Ming-Yue, LUO Zhi-Ping, HUI Kwan San, CHEN Hong-Yu, LI Lai-sheng, HUI Kwun Nam, ZHANG Qiu-Yun. Synthesis and Electrochemical Capacitive Performances of Novel Hierarchically Micro-Meso-Structured Porous Carbons Fabricated Using Microporous Rod-Like Hydroxyapatites as a Template[J]. Acta Physico-Chimica Sinica,
;2013, 29(02): 298-304.
doi:
10.3866/PKU.WHXB201211213
-
Electrochemical capacitors (ECs) are attractive energy storage systems for applications with high power requirements. Porous carbons are the materials that are most frequently used for the electrodes in ECs, because of their large surface area, high conductivity, chemical inertness, low cost, and tunable pore structure. Here, novel hierarchically micro-meso-structured porous carbons were synthesized, using microporous rod-like hydroxyapatite nanoparticles as a template and sucrose as a carbon source. The morphology and surface properties of the as-prepared porous carbons were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and Brunauer-Emmett-Teller surface analysis. The electrochemical capacitive performances were evaluated in an aqueous solution of 1 mol·L-1 H2SO4 using cyclic voltammetry, electrochemical impedance spectroscopy, and constant current charge/discharge tests. The resultant carbons showed a high surface area of more than 719.7 m2·g-1, large pore volumes of more than 1.32 cm3·g-1, and a disordered pore structure composed of randomly distributed micropores, collapsed mesopores, and interweaving rod-like mesopores that took the shape of the template. As the carbonization temperature was increased, the density of micropores and rod-like mesopores decreased, and a tri-modal pore size distribution appeared for the carbon sample carbonized at 900 ° C. Because of these unique characteristics, the electrode material originated from the porous carbon carbonized at 900℃ exhibited od electrochemical capacitive performances.
-
-
-
[1]
(1) Shen, B. S.; Feng,W. J.; Lang, J.W.;Wang, R. T.; Tai, Z. X.;Yan, X. B. Acta Phys. -Chim. Sin. 2012, 28, 1726. [申保收,冯旺军, 郎俊伟, 王儒涛, 邰志新, 阎兴斌. 物理化学学报,2012, 28, 1726.] doi: 10.3866/PKU.WHXB201204261
-
[2]
(2) Ghosh, A.; Lee, Y. H. ChemSusChem 2012, 5, 480. doi: 10.1002/cssc.v5.3
-
[3]
(3) Zhang, L. L.; Zhao, X. S. Chem. Soc. Rev. 2009, 38, 2520. doi: 10.1039/b813846j
-
[4]
(4) Pandolfo, A. G.; Hollenkamp, A. F. J. Power Sources 2006, 157,11. doi: 10.1016/j.jpowsour.2006.02.065
-
[5]
(5) Simon, P.; tsi, Y. Nat. Mater. 2008, 7, 845. doi: 10.1038/nmat2297
-
[6]
(6) Guo, P. Z.; Ji, Q. Q.; Zhang, L. L.; Zhao, S. Y.; Zhao, X. S. Acta Phys. -Chim. Sin. 2011, 27, 2836. [郭培志, 季倩倩, 张丽莉,赵善玉, 赵修松. 物理化学学报, 2011, 27, 2836.] doi: 10.3866/PKU.WHXB20112836
-
[7]
(7) Li,W.; Zhou, J.; Xing,W.; Zhuo, S. P.; Lü, Y. M. Acta Phys. -Chim. Sin. 2011, 27, 620. [李文, 周晋, 邢伟,禚淑萍, 吕忆民. 物理化学学报, 2011, 27, 620.] doi: 10.3866/PKU.WHXB20110331
-
[8]
(8) Liu, Y. L.; Li, L. X.; Chen, X. H.; Song, H. H. Acta Phys. -Chim. Sin. 2007, 23, 1399. [刘宇林, 李丽霞, 陈晓红,宋怀河. 物理化学学报, 2007, 23, 1399.] doi: 10.3866/PKU.WHXB20070917
-
[9]
(9) Schüth, F. Angew. Chem. Int. Edit. 2003, 42, 3604.
-
[10]
(10) Knox, J. H.; Kaur, B.; Millward, G. R. J. Chromatogr. 1986,352, 3. doi: 10.1016/S0021-9673(01)83368-9
-
[11]
(11) Wu, X.; Hong, X. T.; Nan, J.; Luo, Z.; Zhang, Q.; Li, L.; Chen,H.; Hui, K. S. Microporous Mesoporous Mat. 2012, 160, 25.doi: 10.1016/j.micromeso.2012.04.013
-
[12]
(12) Wang, H. C.; Li, B. L.; Li, J. T.; Lin, P.; Bian, X. B.; Li, J.;Zhang, B.;Wan, Z. X. Appl. Surf. Sci. 2011, 257, 4325. doi: 10.1016/j.apsusc.2010.12.051
-
[13]
(13) Liu, B.; Shioyama, H.; Akita, T.; Xu, Q. J. Am. Chem. Soc.2008, 130, 5390. doi: 10.1021/ja7106146
-
[14]
(14) Liu, B.; Shioyama, H.; Jiang, H.; Zhang, X.; Xu, Q. Carbon2010, 48, 456. doi: 10.1016/j.carbon.2009.09.061
-
[15]
(15) Morishita, T.; Soneda, Y.; Tsumura, T.; Inagaki, M. Carbon2006, 44, 2360. doi: 10.1016/j.carbon.2006.04.030
-
[16]
(16) Morishita, T.; Ishihara, K.; Kato, M.; Inagaki, M. Carbon 2007,45, 209. doi: 10.1016/j.carbon.2006.09.032
-
[17]
(17) Xu, B.; Peng, L.;Wang, G. Q.; Cao, G. P.;Wu, F. Carbon 2010,48, 2377. doi: 10.1016/j.carbon.2010.03.003
-
[18]
(18) Zhao, C.;Wang,W.; Yu, Z.; Zhang, H.;Wang, A.; Yang, Y.J. Mater. Chem. 2010, 20, 976. doi: 10.1039/b911913b
-
[19]
(19) Zhang,W.; Huang, Z. H.; Cao, G.; Kang, F.; Yang, Y. J. Power Sources 2012, 204, 230. doi: 10.1016/j.jpowsour.2011.12.054
-
[20]
(20) Xia, K.; Gao, Q.; Jiang, J.; Hu, J. Carbon 2008, 46, 1718. doi: 10.1016/j.carbon.2008.07.018
-
[21]
(21) Li, L. Y.; Song,W. H.; Chen, T. H. Acta Phys. -Chim. Sin. 2009,25, 2404. [李丽颖, 宋文华, 陈铁红. 物理化学学报, 2009,25, 2404.] doi: 10.3866/PKU.WHXB20091020
-
[22]
(22) Buckley, J. J.; Lee, A. F.; Olivi, L.;Wilson, K. J. Mater. Chem.2010, 20, 8056. doi: 10.1039/c0jm01500h
-
[23]
(23) Lee, S. Y.; Park, S. J. J. Solid State Chem. 2011, 184, 2655. doi: 10.1016/j.jssc.2011.07.034
-
[24]
(24) Sing, K. S.W.; Everett, D. H.; Haul, R. A.; Moscou,W. L.;Pierotti, R. A. Pure Appl. Chem. 1985, 57, 603. doi: 10.1351/pac198557040603
-
[25]
(25) Hong, X. T.;Wu, X.; Zhang, Q.; Xiao, M.; Yang, G.; Qiu, M.;Han, G. Appl. Surf. Sci. 2012, 258, 4801. doi: 10.1016/j.apsusc.2012.01.102
-
[26]
(26) Kruk, M.; Kohlhaas, K. M.; Dufour, B.; Celer, E. B.; Jaroniec,M.;Matyjaszewski,K.; Ruoff, R. S.;Kowalewski, T.Microporous Mesoporous Mat. 2007, 102, 178. doi: 10.1016/j.micromeso.2006.12.027
-
[27]
(27) Zhao, C. R.;Wang,W. K.; Yu, Z. B.; Zhang, H.;Wang, A. B.;Yang, Y. S. J. Mater. Chem. 2010, 20, 976. doi: 10.1039/b911913b
-
[28]
(28) Wang, D.W.; Li, F.; Liu, M.; Lu, G. Q.; Cheng, H. M. Angew. Chem. Int. Edit. 2007, 47, 373.
-
[29]
(29) Wang, D.W.; Li, F.; Chen, Z. G.; Lu, G. Q.; Cheng, H. M.Chem. Mater. 2008, 20, 7195. doi: 10.1021/cm801729y
-
[30]
(30) Kim, H.; Popov, B. N. Journal of the Electrochemical Society2003, 150, A1153.
-
[31]
(31) Arulepp, M.; Permann, L.; Leis, J.; Perkson, A.; Rumma, K.;Jänes, A.; Lust, E. J. Power Sources 2004, 133, 320. doi: 10.1016/j.jpowsour.2004.03.026
-
[1]
-
-
-
[1]
Hailian Tang , Siyuan Chen , Qiaoyun Liu , Guoyi Bai , Botao Qiao , Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004
-
[2]
Jingke LIU , Jia CHEN , Yingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060
-
[3]
Zhuo Wang , Xue Bai , Kexin Zhang , Hongzhi Wang , Jiabao Dong , Yuan Gao , Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002
-
[4]
Lu XU , Chengyu ZHANG , Wenjuan JI , Haiying YANG , Yunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431
-
[5]
Jing SU , Bingrong LI , Yiyan BAI , Wenjuan JI , Haiying YANG , Zhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414
-
[6]
Shuhui Li , Xucen Wang , Yingming Pan . Exploring the Role of Electrochemical Technologies in Everyday Life. University Chemistry, 2025, 40(3): 302-307. doi: 10.12461/PKU.DXHX202406059
-
[7]
Cen Zhou , Biqiong Hong , Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086
-
[8]
Zhengli Hu , Jia Wang , Yi-Lun Ying , Shaochuang Liu , Hui Ma , Wenwei Zhang , Jianrong Zhang , Yi-Tao Long . Exploration of Ideological and Political Elements in the Development History of Nanopore Electrochemistry. University Chemistry, 2024, 39(8): 344-350. doi: 10.3866/PKU.DXHX202401072
-
[9]
Jingwen Wang , Minghao Wu , Xing Zuo , Yaofeng Yuan , Yahao Wang , Xiaoshun Zhou , Jianfeng Yan . Advances in the Application of Electrochemical Regulation in Investigating the Electron Transport Properties of Single-Molecule Junctions. University Chemistry, 2025, 40(3): 291-301. doi: 10.12461/PKU.DXHX202406023
-
[10]
Guanghui SUI , Yanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221
-
[11]
Qiqi Li , Su Zhang , Yuting Jiang , Linna Zhu , Nannan Guo , Jing Zhang , Yutong Li , Tong Wei , Zhuangjun Fan . 前驱体机械压实制备高密度活性炭及其致密电容储能性能. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-. doi: 10.3866/PKU.WHXB202406009
-
[12]
Xiangyu CAO , Jiaying ZHANG , Yun FENG , Linkun SHEN , Xiuling ZHANG , Juanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270
-
[13]
Jiahong ZHENG , Jiajun SHEN , Xin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253
-
[14]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
-
[15]
Qin ZHU , Jiao MA , Zhihui QIAN , Yuxu LUO , Yujiao GUO , Mingwu XIANG , Xiaofang LIU , Ping NING , Junming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022
-
[16]
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
-
[17]
Kun Xu , Xinxin Song , Zhilei Yin , Jian Yang , Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050
-
[18]
Yuanchao LI , Weifeng HUANG , Pengchao LIANG , Zifang ZHAO , Baoyan XING , Dongliang YAN , Li YANG , Songlin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252
-
[19]
Xinpeng LIU , Liuyang ZHAO , Hongyi LI , Yatu CHEN , Aimin WU , Aikui LI , Hao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488
-
[20]
Jiahong ZHENG , Jingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170
-
[1]
Metrics
- PDF Downloads(680)
- Abstract views(1086)
- HTML views(8)