Citation:
GUO Li-Mei, KUANG Yuan-Jiang, YANG Xiao-Dan, YU Yan-Long, YAO Jiang-Hong, CAO Ya-An. Photocatalytic Reduction of CO2 into CH4 Using SrB2O4 Catalyst[J]. Acta Physico-Chimica Sinica,
;2013, 29(02): 397-402.
doi:
10.3866/PKU.WHXB201211161
-
The reduction of carbon dioxide to methane in the presence of water was used to evaluate the photocatalytic activity of a prepared strontium metaborate catalyst. The strontium metaborate (SrB2O4) was prepared by a simple sol-gel method, and was shown to exhibit better photocatalytic performance than TiO2 (P25) under UV-light irradiation. The structure, morphology, and energy levels of the photocatalysts were studied by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), photoluminescence (PL) spectroscopy, and UV-Vis diffuse reflectance absorption spectroscopy. It was revealed that the SrB2O4 valence band (VB) was located at 2.07 V (vs normal hydrogen electrode, NHE), which is more positive than Eredoxo (H2O/H+) (0.82 V (vs NHE)); the conduction band was estimated to be -1.47 V (vs NHE)), which is more negative than Eredoxo (CO2/CH4) (-0.24 V (vs NHE)). Therefore, it is clear that strontium metaborate is capable of transforming CO2 into CH4. Moreover, the potential at the bottom of the conduction band for SrB2O4 is more negative than that for TiO2(P25), leading to a higher deoxidization capacity, which also favors CH4 formation. Thus, SrB2O4 exhibits a higher photocatalytic activity than TiO2(P25).
-
-
-
[1]
(1) Lo, C. C.; Hung, C. H.; Yuan, C. S.;Wu, J. F. Sol. Energy Mater. Sol. Cells 2007, 91, 1765. doi: 10.1016/j.solmat.2007.06.003
-
[2]
(2) Dimitrijevic, N. M.; Vijayan, B. K.; Poluektov, O. G.; Rajh, T.;Gray, K. A.; He, H; Zapol, P. J. Am. Chem. Soc. 2011, 133,3964. doi: 10.1021/ja108791u
-
[3]
(3) Tseng, I. H.; Chang,W. C.;Wu, J. Appl. Catal. B: Environ.2002, 37, 37. doi: 10.1016/S0926-3373(01)00322-8
-
[4]
(4) Xia, X. H.; Jia, Z. J.; Yu, Y.; Liang, Y.;Wang, Z.; Ma, L. L.Carbon 2007, 45, 717. doi: 10.1016/j.carbon.2006.11.028
-
[5]
(5) Varghese, O. K.; Paulose, M.; LaTempa, T. J.; Grimes, C. A.Nano Lett. 2009, 9, 731. doi: 10.1021/nl803258p
-
[6]
(6) Ikeue, K.; Yamashita, H.; Anpo, M. J. Phys. Chem. B 2001, 105,8350. doi: 10.1021/jp010885g
-
[7]
(7) Li, D.; Haneda, H.; Hishita, S.; Ohashi, N. Chem. Mater. 2005,17, 2596. doi: 10.1021/cm049099p
-
[8]
(8) Tan, S. S.; Zou, L. D.; Hu, E. Catal. Today 2006, 115, 269. doi: 10.1016/j.cattod.2006.02.057
-
[9]
(9) Tan, S. S.; Zou, L. D.; Hu, E. Catal. Today 2008, 131, 125. doi: 10.1016/j.cattod.2007.10.011
-
[10]
(10) Wang, C.; Thompson, R. L.; Baltrus, J.; Matranga, C. J. Phys. Chem. Lett. 2010, 1, 48. doi: 10.1021/jz9000032
-
[11]
(11) Pan, P.W.; Chen, Y.W. Catal. Commun. 2007, 8, 1546. doi: 10.1016/j.catcom.2007.01.006
-
[12]
(12) Liu, Q.; Zhou, Y.; Kou, J. H.; Chen, X. Y.; Tian, Z. P.; Gao, J.;Yan, S. C.; Zou, Z. G. J. Am. Chem. Soc. 2010, 132, 14385. doi: 10.1021/ja1068596
-
[13]
(13) Yan, S. C.; Ouyang, S. X.; Gao, J.; Yang, M.; Feng, J. Y.; Fan,X. X.;Wan, L. J.; Li, Z. S.; Ye, J. H.; Zhou, Y.; Zou, Z. G.Angew. Chem. 2010, 122, 6544. doi: 10.1002/ange.201003270
-
[14]
(14) Fu, Y. H.; Sun, D. R.; Chen, Y. J.; Huang, R. K.; Ding, Z. X.;Fu, X. Z.; Li, Z. H. Angew. Chem. Int. Edit. 2012, 124, 3420.
-
[15]
(15) Fujimoto, Y.; Yanagida, T.; Yokota, Y.; Kawaguchi, N.; Fukuda,K.; Totsuka, D.;Watanab, K.; Yamazaki, A.; Yoshikawa, A. Opt. Mater. 2011, 34, 444. doi: 10.1016/j.optmat.2011.04.016
-
[16]
(16) Li, R.; Bao, L. H.; Li, X. D. CrystEngComm 2011, 13, 5858.doi: 10.1039/c1ce05537b
-
[17]
(17) Yang, H. G.; Liu, G.; Qiao, S. Z.; Sun, C. H.; Jin, Y. G.; Smith,S. C.; Zou, J.; Cheng, H. M.; Lu, G. Q. J. Am. Chem. Soc. 2009,131, 12868. doi: 10.1021/ja903463q
-
[18]
(18) Xu, J. H.; Dai,W. L.; Li, J. X.; Cao, Y.; Li, H. X.; He, H. Y.;Fan, K. N. Catal. Commun. 2008, 9, 146. doi: 10.1016/j.catcom.2007.05.043
-
[19]
(19) Li, R.; Tao, X. Y.; Li, X. D. J. Mater. Chem. 2009, 19, 983. doi: 10.1039/b816518a
-
[20]
(20) Cao, Y. Q.; He, T.; Chen, Y. M.; Cao, Y. A. J. Phys. Chem. C2010, 114, 3627. doi: 10.1021/jp100786x
-
[21]
(21) Li, D.; Haneda, H.; Hishita, S.; Ohashi, N. Chem. Mater. 2005,17, 2596. doi: 10.1021/cm049099p
-
[22]
(22) Serpone, N.; Lawless, D. Khairutdinov, R. J. Phys. Chem. 1995,99, 16655. doi: 10.1021/j100045a027
-
[23]
(23) Yu, J. C.; Ho,W.; Yu, J.; Hark, S. K.; Lu, K. Langmuir 2003, 19,3889. doi: 10.1021/la025775v
-
[24]
(24) Saraf, L. V.; Patil, S. I.; Ogale, S. B. Int. J. Mod. Phys. B 1998,12, 2635. doi: 10.1142/S0217979298001538
-
[25]
(25) Yuan, J. X.;Wu, Q.; Zhang, P.; Yao, J. H.; He, T.; Cao, Y. A.Environ. Sci. Technol. 2012, 46, 2330. doi: 10.1021/es203333k
-
[26]
(26) Li, D.; Haneda, H.; Hishita, S.; Ohashi, N. Chem. Mater. 2005,17, 2588. doi: 10.1021/cm049100k
-
[27]
(27) Varghese, O. K.; Paulose, M.; LaTempa, T. J.; Grimes, C. A.Nano Lett. 2009, 9, 731. doi: 10.1021/nl803258p
-
[28]
(28) Izumi, Y. Coord. Chem. Rev. 2012, 10, 1016.
-
[29]
(29) Dimitrijevic, N. M.; Vijayan, B. K.; Poluektov, O. G.; Rajh, T.;Gray, K. A.; He, H. Y.; Zapol, P. J. Am. Chem. Soc. 2011, 133,3964. doi: 10.1021/ja108791u
-
[1]
-
-
-
[1]
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
-
[2]
Yi YANG , Shuang WANG , Wendan WANG , Limiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434
-
[3]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[4]
Yuejiao An , Wenxuan Liu , Yanfeng Zhang , Jianjun Zhang , Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021
-
[5]
Yulian Hu , Xin Zhou , Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088
-
[6]
Xiutao Xu , Chunfeng Shao , Jinfeng Zhang , Zhongliao Wang , Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031
-
[7]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[8]
Tong Zhou , Xue Liu , Liang Zhao , Mingtao Qiao , Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020
-
[9]
Xiangyu Chen , Aihao Xu , Dong Wei , Fang Huang , Junjie Ma , Huibing He , Jing Xu . Atomic cerium-doped CuOx catalysts for efficient electrocatalytic CO2 reduction to CH4. Chinese Chemical Letters, 2025, 36(1): 110175-. doi: 10.1016/j.cclet.2024.110175
-
[10]
Tong Zhou , Jun Li , Zitian Wen , Yitian Chen , Hailing Li , Zhonghong Gao , Wenyun Wang , Fang Liu , Qing Feng , Zhen Li , Jinyi Yang , Min Liu , Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005
-
[11]
Runhua Chen , Qiong Wu , Jingchen Luo , Xiaolong Zu , Shan Zhu , Yongfu Sun . 缺陷态二维超薄材料用于光/电催化CO2还原的基础与展望. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-. doi: 10.3866/PKU.WHXB202308052
-
[12]
Fangfang WANG , Jiaqi CHEN , Weiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350
-
[13]
Xiuzheng Deng , Changhai Liu , Xiaotong Yan , Jingshan Fan , Qian Liang , Zhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942
-
[14]
Hui Li , Yanxing Qi , Jia Chen , Juanjuan Wang , Min Yang , Hongdeng Qiu . Synthesis of amine-pillar[5]arene porous adsorbent for adsorption of CO2 and selectivity over N2 and CH4. Chinese Chemical Letters, 2024, 35(11): 109659-. doi: 10.1016/j.cclet.2024.109659
-
[15]
Zelong LIANG , Shijia QIN , Pengfei GUO , Hang XU , Bin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409
-
[16]
Xue Dong , Xiaofu Sun , Shuaiqiang Jia , Shitao Han , Dawei Zhou , Ting Yao , Min Wang , Minghui Fang , Haihong Wu , Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012
-
[17]
Jiaxing Cai , Wendi Xu , Haoqiang Chi , Qian Liu , Wa Gao , Li Shi , Jingxiang Low , Zhigang Zou , Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002
-
[18]
Ke-Ai Zhou , Lian Huang , Xing-Ping Fu , Li-Ling Zhang , Yu-Ling Wang , Qing-Yan Liu . Fluorinated metal-organic framework for methane purification from a ternary CH4/C2H6/C3H8 mixture. Chinese Journal of Structural Chemistry, 2023, 42(11): 100172-100172. doi: 10.1016/j.cjsc.2023.100172
-
[19]
Minna Ma , Yujin Ouyang , Yuan Wu , Mingwei Yuan , Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093
-
[20]
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349
-
[1]
Metrics
- PDF Downloads(1041)
- Abstract views(1753)
- HTML views(42)