Citation: DING Peng, XU You-Long, SUN Xiao-Fei. Synthesis and Performance of Nano MnO as an Anode Material for Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinica, ;2013, 29(02): 293-297. doi: 10.3866/PKU.WHXB201211142 shu

Synthesis and Performance of Nano MnO as an Anode Material for Lithium-Ion Batteries

  • Received Date: 10 September 2012
    Available Online: 14 November 2012

  • Transition metal oxides, especially manganese monoxide (MnO), are being intensively studied as candidate anode materials for next generation lithium-ion batteries in high efficiency energy storage applications such as portable electronics, electric vehicles, and stationary electricity storage. In this paper, the MnC2O4·2H2O precursor, prepared fromKMnO4 and ascorbic acid, was heat-treated to synthesize nano MnO by a solid-state reaction approach. X-ray diffraction (XRD) showed that the so-obtained MnO had a rock-salt structure with od crystallinity, and scanning electron microscopy (SEM) indicated that the primary particle size was about 50-100 nm, while the secondary particle size was about 400-600 nm. As an active material for lithium-ion batteries, the nano MnO material delivered a reversible capacity of 679.7 mAh·g-1 with an initial columbic efficiency of 68.9% at a current density of 46.3 mA·g-1. The specific discharge capacity slightly decreased from 584.5 to 581.5 mAh·g-1 with a retention of 99.5% after 50 cycles at a current density of 141.1 mA·g-1. Moreover, the material was able to release a capacity of 290 mAh·g-1 at current densities as high as 494.7 mA·g-1 (corresponding to ~2C), which demonstrates reasonable rate performance and moderately fast charge/discharge capabilities. All of the above characteristics make nano MnO promising anode materials for developing high-capacity, long-life, low-cost, and environmentally-friendly lithium-ion batteries.

  • 加载中
    1. [1]

      (1) Wang, B.;Wu, X. L.; Shu, C. Y.; Guo, Y. G.;Wang, C. R.Journal of Materials Chemistry 2010, 20, 10661. doi: 10.1039/c0jm01941k

    2. [2]

      (2) Guo, Y. G.; Hu, Y. S.; Sigle,W.; Maier, J. Advanced Materials2007, 19, 2087.

    3. [3]

      (3) Liu, C.; Li, F.; Ma, L. P.; Cheng, H. M. Advanced Materials2010, 22, E28.

    4. [4]

      (4) Li, H.;Wang, Z.; Chen, L.; Huang, X. Advanced Materials2009, 21, 4593. doi: 10.1002/adma.v21:45

    5. [5]

      (5) Maier, J. Nat. Mater 2005, 4, 805. doi: 10.1038/nmat1513

    6. [6]

      (6) Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J. M.Nature 2000, 407, 496. doi: 10.1038/35035045

    7. [7]

      (7) Li, H.; Balaya, P.; Maier, J. Journal of the Electrochemical Society 2004, 151, A1878.

    8. [8]

      (8) Wang, H.; Pan, Q.; Zhao, J.; Chen,W. Journal of Alloys and Compounds 2009, 476, 408. doi: 10.1016/j.jallcom.2008.09.013

    9. [9]

      (9) Tang, X.; Pan, Q.; Liu, J. Journal of the Electrochemical Society2010, 157, A55.

    10. [10]

      (10) Yu, X. Q.; He, Y.; Sun, J. P.; Tang, K.; Li, H.; Chen, L. Q.;Huang, X. J. Electrochemistry Communications 2009, 11, 791.doi: 10.1016/j.elecom.2009.01.040

    11. [11]

      (11) Poizot, P.; Laruelle, S.; Grugeon, S.; Tarascon, J. M. Journal of the Electrochemical Society 2002, 149, A1212.

    12. [12]

      (12) Zhong, K.; Xia, X.; Zhang, B.; Li, H.;Wang, Z.; Chen, L.Journal of Power Sources 2010, 195, 3300. doi: 10.1016/j.jpowsour.2009.11.133

    13. [13]

      (13) Zhong, K.; Zhang, B.; Luo, S.;Wen,W.; Li, H.; Huang, X.;Chen, L. Journal of Power Sources 2011, 196, 6802. doi: 10.1016/j.jpowsour.2010.10.031

    14. [14]

      (14) Ding, Y. L.;Wu, C. Y.; Yu, H. M.; Xie, J.; Cao, G. S.; Zhu, T. J.;Zhao, X. B.; Zeng, Y.W. Electrochimica Acta 2011, 56, 5844.doi: 10.1016/j.electacta.2011.04.071

    15. [15]

      (15) Li, X.; Li, D.; Qiao, L.;Wang, X.; Sun, X.;Wang, P.; He, D.Journal of Materials Chemistry 2012, 22, 9189. doi: 10.1039/c2jm30604b

    16. [16]

      (16) Sun, B.; Chen, Z.; Kim, H. S.; Ahn, H.;Wang, G. Journal of Power Sources 2011, 196, 3346. doi: 10.1016/j.jpowsour.2010.11.090

    17. [17]

      (17) Ban, C.;Wu, Z.; Gillaspie, D. T.; Chen, L.; Yan, Y.; Blackburn,J. L.; Dillon, A. C. Advanced Materials 2010, 22, E145.

    18. [18]

      (18) Mai, Y. J.; Tu, J. P.; Xia, X. H.; Gu, C. D.;Wang, X. L. Journal of Power Sources 2011, 196, 6388. doi: 10.1016/j.jpowsour.2011.03.089

    19. [19]

      (19) Delmer, O.; Balaya, P.; Kienle, L.; Maier, J. Advanced Materials2008, 20, 501.

    20. [20]

      (20) Lou, X.W.; Deng, D.; Lee, J. Y.; Feng, J.; Archer, L. A.Advanced Materials 2008, 20, 258.

    21. [21]

      (21) Cheng, F.; Huang, K. L.; Liu, S. Q.; Fang, X.S.; Zhang, X. Acta Phys. -Chim. Sin. 2011, 27, 1439. [程凤, 黄可龙, 刘素琴,房雪松, 张新. 物理化学学报, 2011, 27, 1439.] doi: 10.3866/PKU.WHXB20110607

    22. [22]

      (22) Balaya, P.; Li, H.; Kienle, L.; Maier, J. Advanced Functional Materials 2003, 13, 621.

    23. [23]

      (23) Jamnik, J.; Maier, J. Physical Chemistry Chemical Physics2003, 5, 5215.

    24. [24]

      (24) Kokubu, T.; Oaki, Y.; Hosono, E.; Zhou, H.; Imai, H. Advanced Functional Materials 2011, 21, 3673. doi: 10.1002/adfm.201101138

    25. [25]

      (25) Liu, Y.; Zhao, X.; Li, F.; Xia, D. Electrochimica Acta 2011, 56,6448. doi: 10.1016/j.electacta.2011.04.133

    26. [26]

      (26) Gao,W. C.; Huang, T.; Shen, Y. D.; Yu, A. S. Acta Phys. -Chim. Sin. 2011, 27, 2129. [高文超, 黄桃, 沈宇栋, 余爱水. 物理化学学报, 2011, 27, 2129.] doi: 10.3866/PKU.WHXB20110933


  • 加载中
    1. [1]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    2. [2]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    3. [3]

      Simin Fang Wei Huang Guanghua Yu Cong Wei Mingli Gao Guangshui Li Hongjun Tian Wan Li . Integrating Science and Education in a Comprehensive Chemistry Design Experiment: The Preparation of Copper(I) Oxide Nanoparticles and Its Application in Dye Water Remediation. University Chemistry, 2024, 39(8): 282-289. doi: 10.3866/PKU.DXHX202401023

    4. [4]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    5. [5]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    6. [6]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    7. [7]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    8. [8]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    9. [9]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    10. [10]

      Zunyuan Xie Lijin Yang Zixiao Wan Xiaoyu Liu Yushan He . Exploration of the Preparation and Characterization of Nano Barium Titanate and Its Application in Inorganic Chemistry Laboratory Teaching. University Chemistry, 2024, 39(4): 62-69. doi: 10.3866/PKU.DXHX202310137

    11. [11]

      Juan Yuan Bin Zhang Jinping Wu Mengfan Wang . Design of a Comprehensive Experiment on Preparation and Characterization of Cu2(Salen)2 Nanomaterials with Two Distinct Morphologies. University Chemistry, 2024, 39(10): 420-425. doi: 10.3866/PKU.DXHX202402014

    12. [12]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    13. [13]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    14. [14]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    15. [15]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    16. [16]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    17. [17]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    18. [18]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    19. [19]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    20. [20]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

Metrics
  • PDF Downloads(1091)
  • Abstract views(1550)
  • HTML views(64)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return