Citation: LÜ Wei, XUE Ying, MENG Qing-Wei. Classification Prediction of Inhibitors of H1N1 Neuraminidase by Machine Learning Methods[J]. Acta Physico-Chimica Sinica, ;2013, 29(01): 217-223. doi: 10.3866/PKU.WHXB201211122 shu

Classification Prediction of Inhibitors of H1N1 Neuraminidase by Machine Learning Methods

  • Received Date: 13 September 2012
    Available Online: 12 November 2012

    Fund Project: 国家重点基础研究发展规划项目(973) (2009CB118500)资助 (973) (2009CB118500)

  • Influenza is a major respiratory infection associated with significant morbidity in the general population and mortality in elderly and high-risk patients. Research has shown that inhibiting neuraminidase (NA) prevents RNA replication, so NA is an important drug target in the treatment of H1N1 influenza virus. It is becoming increasingly important to screen and predict molecules that have NA inhibitory activity by computational methods. In this work, we explored several machine learning methods (support vector machine (SVM), k-nearest neighbor (k-NN), and C4.5 decision tree (C4.5 DT)) for predicting NA inhibitors (NAIs). These predictive systems were tested using 227 compounds (72 NAIs and 155 non-NAIs), which were significantly more diverse in chemical structure than those used in other studies. A feature selection method was used to improve the accuracy of the predictions and the selection of molecular descriptors responsible for distinguishing between NAIs and non-NAIs. The prediction accuracies were 75.9%-92.6% for all the compounds, 64.3%-78.6% for NAIs, and 77.5%-97.5% for non-NAIs. The SVM method gave the best total accuracy of 92.6% for all of methods. This work suggests that machine learning methods can be useful to predict potential NAIs from unknown sets of compounds and to determine molecular descriptors associated with NAIs.

  • 加载中
    1. [1]

      (1) Erik, D. C. J. Clin. Virol. 2001, 22, 73. doi: 10.1016/S1386-6532(01)00167-6

    2. [2]

      (2) Palese, P.; Tobita, K.; Ueda, M. Virology 1974, 61, 397. doi: 10.1016/0042-6822(74)90276-1

    3. [3]

      (3) Moscona, A. N. Eng. J. Med. 2005, 353, 1363. doi: 10.1056/NEJMra050740

    4. [4]

      (4) Erik, D. C. Nat. Rev. Drug. Disc. 2006, 5, 1015. doi: 10.1038/nrd2175

    5. [5]

      (5) Schmidt, A. C. Drugs 2004, 64, 2031. doi: 10.2165/00003495-200464180-00003

    6. [6]

      (6) Suzuki, Y.; Sato, K.; Kiso, M.; Hasegawa, A. Glycoconjugate J.1990, 7, 349. doi: 10.1007/BF01073378

    7. [7]

      (7) Hagiwara, T.; Kijima-Suda, I.; Ido, T.; Ohrui, H.; Tomita, K.Carbohydr. Res. 1994, 263, 167. doi: 10.1016/0008-6215(94)00133-2

    8. [8]

      (8) White, C. L.; Janakiraman, M. N.; Laver,W. G.; Philippon, C.Vasella, A.; Air, G. M.; Luo, M. J. Mol. Biol. 1995, 245, 623.doi: 10.1006/jmbi.1994.0051

    9. [9]

      (9) Meindl, P.; Bodo, G.; Palese, P.; Schulman, J.; Tuppy, H.Virology 1974, 58, 457. doi: 10.1016/0042-6822(74)90080-4

    10. [10]

      (10) Mitchell, T. Machine Learning; McGraw-Hill: New York, 1996.

    11. [11]

      (11) Kohavi, R.; John, G. H. Artif. Intell. 1997, 97, 273. doi: 10.1016/S0004-3702(97)00043-X

    12. [12]

      (12) Leach, A. R.; Gillet, V. J. An Introduction to Chemoinformatics;Springer: Heidelberg, 2007; p 82.

    13. [13]

      (13) Yu, H.; Yang, J.;Wang,W.; Han, J. Proc. IEEE 2003, 220.

    14. [14]

      (14) Furlanello, C.; Serafini, M.; Merler, S.; Jurman, G. Neural Networks 2003, 16, 641. doi: 10.1016/S0893-6080(03)00103-5

    15. [15]

      (15) Lew,W.;Wu, H.W.; Mendel, D. B.; Escarpe, P. A.; Chen X.W.;Laver,W. G.; Graves, B. J.; Kim, C. U. Bioorg. Med. Chem. Lett. 1998, 8, 3321. doi: 10.1016/S0960-894X(98)00587-3

    16. [16]

      (16) Sun, C.W.; Huang, H.; Feng, M. Q.; Shi, X. L.; Zhang, X. D.;Zhou, P. Bioorg. Med. Chem. Lett. 2006, 16, 162. doi: 10.1016/j.bmcl.2005.09.033

    17. [17]

      (17) Wen,W. H.;Wang, S. Y.; Tsai, K. C.; Cheng, Y. S. E.; Yang, A.S.; Fang, J. M.;Wong, C. H. Bioorg. Med. Chem. 2010, 18,4074. doi: 10.1016/j.bmc.2010.04.010

    18. [18]

      (18) Yeh, J. Y.; Coumar, M. S.; Horng, J. T.; Shiao, H. Y.; Kuo, F. M.;Lee, H. L.; Chen, I. C.; Chang, C.W.; Tang,W. F.; Tseng, S. N.;Chen, C. J.; Shih, S. R.; Hsu, J. T. A.; Liao, C. C.; Chao, Y. S.;Hsieh, H. P. J. Med. Chem. 2010, 53, 1519. doi: 10.1021/jm901570x

    19. [19]

      (19) Lew,W.;Wu, H.W.; Chen, X.W.; Graves, B. J.; Escarpe, P. A.;MacArthur, H. L.; Mendel, D. B.; Kim, C. U. Bioorg. Med. Chem. Lett. 2000, 10, 1257. doi: 10.1016/S0960-894X(00)00214-6

    20. [20]

      (20) Dao, T. T.; Tung, B. T.; Nguyen, P. H.; Thuong, P. T.; Yoo, S. S.;Kim, E. H.; Kim, S. K.; Oh,W. K. J. Nat. Prod. 2010, 73, 1636.doi: 10.1021/np1002753

    21. [21]

      (21) Kolocouris, N.; Kolocouris, A.; Foscolos, G. B.; Fytas, G.;Neyts, J.; Padalko, E.; Balzarini, J.; Snoeck, R.; Andrei, G.;Clercq, E. D. J. Med. Chem. 1996, 39, 3307. doi: 10.1021/jm950891z

    22. [22]

      (22) Brouillette,W. J.; Bajpai, S. N.; Ali, S. M.; Velu, S. E.;Atigadda, V. R.; Lommer, B. S.; Finley, J. B.; Luo, M.; Aird, G.M. Bioorg. Med. Chem. 2003, 11, 2739. doi: 10.1016/S0968-0896(03)00271-2

    23. [23]

      (23) Liu, A. L.;Wang, H. D.; Lee, S. M. Y.;Wang, Y. T.; Du, G. H.Bioorg. Med. Chem. 2008, 16, 7141. doi: 10.1016/j.bmc.2008.06.049

    24. [24]

      (24) Williams, M. A.; Lew,W.; Mendel, D. B.; Tai, C. Y.; Escarpe, P.A.; Laver,W. G.; Stevens, R. C.; Kim, C. U. Bioorg. Med. Chem. Lett. 1997, 14, 1837.

    25. [25]

      (25) Zhang, L. J.;Williams, M. A.; Mendel, D. B.; Escarpe, P. A.;Kim, C. U. Bioorg. Med. Chem. Lett. 1997, 14, 1847.

    26. [26]

      (26) Lv,W.; Xue, Y. Eur. J. Med. Chem. 2010, 45, 1167. doi: 10.1016/j.ejmech.2009.12.038

    27. [27]

      (27) Lü,W.; Xue, Y. Acta Phys. -Chim. Sin. 2010, 26, 471.[吕巍, 薛英. 物理化学学报, 2010, 26, 471.] doi: 10.3866/PKU.WHXB20100125

    28. [28]

      (28) ChemDraw, Version 9.0; Cambridge Soft Corporation:Cambridge, USA, 2004.

    29. [29]

      (29) Corina, Version 3.4; Molecular Networks GmbHComputerchemie: Erlangen, Germany, 2006.

    30. [30]

      (30) Hasegawa, K. J. Chem. Inf. Comput. Sci. 1999, 39, 112. doi: 10.1021/ci980088o

    31. [31]

      (31) Byvatov, E.; Fechner, U.; Sadowski, J.; Schneider, G. J. Chem. Inf. Comput. Sci. 2003, 43, 1882. doi: 10.1021/ci0341161

    32. [32]

      (32) He, L.; Jurs, P. C.; Custer, L. L.; Durham, S. K.; Pearl, G. M.Chem. Res. Toxicol. 2003, 16, 1567. doi: 10.1021/tx030032a

    33. [33]

      (33) Lü,W.; Xue, Y. Acta Phys. -Chim. Sin. 2011, 27, 1407.[吕巍, 薛英. 物理化学学报, 2011, 27, 1407.] doi: 10.3866/PKU.WHXB20110608

    34. [34]

      (34) Yang, X. G.; Lv,W.; Chen, Y. Z.; Xue, Y. J. Comput. Chem.2009, 31, 1249.

    35. [35]

      (35) Lin, H. H.; Han, L. Y.; Yap, C.W.; Xue, Y.; Liu, X. H.; Zhu, F.;Chen, Y. Z. J. Mol. Graph. Model. 2007, 26, 505. doi: 10.1016/j.jmgm.2007.03.003

    36. [36]

      (36) Xue, Y.; Li, H.; Ung, C. Y.; Yap, C.W.; Chen, Y. Z. Chem. Res. Toxicol. 2006, 19, 1030. doi: 10.1021/tx0600550

    37. [37]

      (37) Degroeve, S.; de Baets, B.; van de Peer, Y.; Rouze, P.Bioinformatics 2002, 18, S75.

    38. [38]

      (38) Garner, S. R. Weka, version 3.4.12; University ofWaikato: NewZealand, 2005.

    39. [39]

      (39) Johnson, R. A.;Wichern, D.W. Applied Multivariate Statistical Analysis; Prentice Hall: New York, 1982.

    40. [40]

      (40) Quinlan, J. R. C4.5, Programs for Machine Learning; MorganKaufmann: San Mateo, CA, 1992.

    41. [41]

      (41) Baldi, P.; Brunak, S.; Chauvin, Y.; Andersen, C. A.; Nielsen, H.Bioinformatics 2000, 16, 412. doi: 10.1093/bioinformatics/16.5.412


  • 加载中
    1. [1]

      Xinghai Li Zhisen Wu Lijing Zhang Shengyang Tao . Machine Learning Enables the Prediction of Amide Bond Synthesis Based on Small Datasets. Acta Physico-Chimica Sinica, 2025, 41(2): 100010-. doi: 10.3866/PKU.WHXB202309041

    2. [2]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    3. [3]

      Jia Zhou Huaying Zhong . Experimental Design of Computational Materials Science Combined with Machine Learning. University Chemistry, 2025, 40(3): 171-177. doi: 10.12461/PKU.DXHX202406004

    4. [4]

      Yuting Zhang Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037

    5. [5]

      Xintian Xie Sicong Ma Yefei Li Cheng Shang Zhipan Liu . Application of Machine Learning Potential-based Theoretical Simulations in Undergraduate Teaching Laboratory Course Design. University Chemistry, 2025, 40(3): 140-147. doi: 10.12461/PKU.DXHX202405164

    6. [6]

      Jia Zhou . Constructing Potential Energy Surface of Water Molecule by Quantum Chemistry and Machine Learning: Introduction to a Comprehensive Computational Chemistry Experiment. University Chemistry, 2024, 39(3): 351-358. doi: 10.3866/PKU.DXHX202309060

    7. [7]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    8. [8]

      Yinwu Su Xuanwen Zheng Jianghui Du Boda Li Tao Wang Zhiyan Huang . Green Synthesis of 1,3-Dibromoacetone Using Halogen Exchange Method: Recommending a Basic Organic Synthesis Teaching Experiment. University Chemistry, 2024, 39(5): 307-314. doi: 10.3866/PKU.DXHX202311092

    9. [9]

      Gaofeng WANGShuwen SUNYanfei ZHAOLixin MENGBohui WEI . Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479

    10. [10]

      Liangfeng YangLiang ZengYanping ZhuQiuan WangJinheng Li . Copper-catalyzed photoredox 1,4-amidocyanation of 1,3-enynes with N-amidopyridin-1-ium salts and TMSCN: Facile access to α-amido allenyl nitriles. Chinese Chemical Letters, 2024, 35(11): 109685-. doi: 10.1016/j.cclet.2024.109685

    11. [11]

      Hai-Yang SongJun JiangYu-Hang SongMin-Hang ZhouChao WuXiang ChenWei-Min He . Supporting-electrolyte-free electrochemical [2 + 2 + 1] annulation of benzo[d]isothiazole 1,1-dioxides, N-arylglycines and paraformaldehyde. Chinese Chemical Letters, 2024, 35(6): 109246-. doi: 10.1016/j.cclet.2023.109246

    12. [12]

      Ling-Hao ZhaoHai-Wei YanJian-Shuang JiangXu ZhangXiang YuanYa-Nan YangPei-Cheng Zhang . Effective assignment of positional isomers in dimeric shikonin and its analogs by 1H NMR spectroscopy. Chinese Chemical Letters, 2024, 35(5): 108863-. doi: 10.1016/j.cclet.2023.108863

    13. [13]

      Wen-Tao OuyangJun JiangYan-Fang JiangTing LiYuan-Yuan LiuHong-Tao JiLi-Juan OuWei-Min He . Sono-photocatalytic amination of quinoxalin-2(1H)-ones with aliphatic amines. Chinese Chemical Letters, 2024, 35(10): 110038-. doi: 10.1016/j.cclet.2024.110038

    14. [14]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    15. [15]

      Jiayu Huang Kuan Chang Qi Liu Yameng Xie Zhijia Song Zhiping Zheng Qin Kuang . Fe-N-C nanostick derived from 1D Fe-ZIFs for Electrocatalytic oxygen reduction. Chinese Journal of Structural Chemistry, 2023, 42(10): 100097-100097. doi: 10.1016/j.cjsc.2023.100097

    16. [16]

      Jun XiongKe-Ke ChenNeng-Bin XieWei ChenWen-Xuan ShaoTong-Tong JiSi-Yu YuYu-Qi FengBi-Feng Yuan . Demethylase-assisted site-specific detection of N1-methyladenosine in RNA. Chinese Chemical Letters, 2024, 35(5): 108953-. doi: 10.1016/j.cclet.2023.108953

    17. [17]

      Peiyan ZhuYanyan YangHui LiJinhua WangShiqing Li . Rh(Ⅲ)‐Catalyzed sequential ring‐retentive/‐opening [4 + 2] annulations of 2H‐imidazoles towards full‐color emissive imidazo[5,1‐a]isoquinolinium salts and AIE‐active non‐symmetric 1,1′‐biisoquinolines. Chinese Chemical Letters, 2024, 35(10): 109533-. doi: 10.1016/j.cclet.2024.109533

    18. [18]

      Junjun HuangRan ChenYajian HuangHang ZhangAnran ZhengQing XiaoDan WuRuxia DuanZhi ZhouFei HeWei Yi . Discovery of an enantiopure N-[2-hydroxy-3-phenyl piperazine propyl]-aromatic carboxamide derivative as highly selective α1D/1A-adrenoceptor antagonist and homology modelling. Chinese Chemical Letters, 2024, 35(11): 109594-. doi: 10.1016/j.cclet.2024.109594

    19. [19]

      Xiao-Ming ChenLianhui SongJun PanFei ZengYi XieWei WeiDong Yi . Visible-light-induced four-component difunctionalization of alkenes to construct phosphorodithioate-containing quinoxalin-2(1H)-ones. Chinese Chemical Letters, 2024, 35(11): 110112-. doi: 10.1016/j.cclet.2024.110112

    20. [20]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

Metrics
  • PDF Downloads(639)
  • Abstract views(1832)
  • HTML views(11)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return