Citation:
	            
		            ZHAO  Dong-Bo, RONG  Chun-Ying, JENKINS  Samantha, KIRK  Steven R., YIN  Du-Lin, LIU  Shu-Bin. Origin of the cis-Effect: a Density Functional Theory Study of Doubly Substituted Ethylenes[J]. Acta Physico-Chimica Sinica,
							;2013, 29(01): 43-54.
						
							doi:
								10.3866/PKU.WHXB201211121
						
					
				
					
				
	        
- 
	                	
It is well known that the trans isomer of a doubly substituted ethylene is more stable than its cis counterpart because of the more favorable electrostatic and steric interactions in the trans conformer. Exceptions do exist nevertheless. 1,2-Difluoroethylene is such an example, so is 1,2-dichloroethylene. The unusual stability of the cis isomer of these doubly substituted ethylene compounds is referred to as the cis-effect, whose nature and origin are still not well understood. In this work, using 12 simple molecules, XHC=CHY (X, Y=F, Cl, Br, CN, CH3, OCH3, C2H6), as examples, we perform systematic studies to investigate the validity, nature, and origin of this effect. Among the systems studied, 9 of them exhibit the existence of the cis-effect and the remaining 3 systems are conventional systems used for the comparison purpose. We employ a large number of density functionals and basis sets to confirm its validity. We also use a few well-established analysis tools, such as natural bond orbital (NBO), energy decomposition analysis (EDA), density functional reactivity theory (DFRT), and non-covalent interaction (NCI) analysis, to pinpoint its nature and origin. We found that there exists a weak but attractive non-covalent interaction between the two substituting groups in the cis conformer. We also found that electrostatic, steric, and kinetic energies all play important roles for the validity of the cis-effect. Nevertheless, none of these quantities can be solely used as the single reason verning the general validity of the cis-effect, suggesting that the origin of the effect is complicated and its validity results from compound interactions from a number of interactions. In this work, we employ two-variable explanations to justify its validity through the electrostatic interaction plus steric effect or kinetic energy, with which reasonable fits with R2=0.86-0.87 were obtained.
 - 
	                	
	                 - 
	                	
- 
			
                    [1]
                
			
(1) (a) Craig, N. C.; Entemann, E. A. J. Am. Chem. Soc. 1961, 83,3047. doi: 10.1021/ja01475a019
 - 
			
                    [2]
                
			
(b) Craig, N. C.; Overend, J. J. Chem. Phys. 1969, 51, 1127.
 - 
			
                    [3]
                
			
(c) Craig, N. C.; Piper, L. G.; Wheeler, V. L. J. Phys. Chem.1971, 76, 1453.
 - 
			
                    [4]
                
			
(d) Craig, N. C.; Chen, A.; Suh, K. H.; Klee, S.; Mellau, G.;Winnewiser, B. P.;Winnewisser, M. J. Phys. Chem. A 1997,101, 9302.
 - 
			
                    [5]
                
			
(e) Craig, N. C.; Brandon, D.W.; Stone, S. C.; Lafferty,W. J.J. Phys. Chem. 1992, 96, 1598.
 - 
			
                    [6]
                
			
(2) Craig, N. C.; Lo, Y. S.; Piper, L. G.; Wheeler, J. C. J. Phys. Chem. 1970, 74, 1712. doi: 10.1021/j100703a011
 - 
			
                    [7]
                
			
(3) (a)Wood, R. E.; Stevenson, D. P. J. Am. Chem. Soc. 1941, 63,1650. doi: 10.1021/ja01851a042
 - 
			
                    [8]
                
			
(b) Gardner, D. V.; McGreer, D. E. Can. J. Chem. 1970, 48,2104.
 - 
			
                    [9]
                
			
(4) (a) Salomma, P.; Nissi, P. Acta Chim. Scand. 1967, 21, 1386.doi: 10.3891/acta.chem.scand.21-1386
 - 
			
                    [10]
                
			
(b) Crump, J.W. J. Org. Chem. 1963, 28, 953.
 - 
			
                    [11]
                
			
(c) Harwell, K. E.; Hatch, L. F. J. Am. Chem. Soc. 1955, 77,1682.
 - 
			
                    [12]
                
			
(5) Waldron, J. T.; Snyder,W. H. J. Am. Chem. Soc. 1973, 95, 5491.doi: 10.1021/ja00798a010
 - 
			
                    [13]
                
			
(6) Huber-Wälchli, P.; Günthard, H. H. Spectrochim. Acta 1981,37, 285. doi: 10.1016/0584-8539(81)80159-6
 - 
			
                    [14]
                
			
(7) Durig, J. R.; Liu, J.; Little, T. S.; Kalasinsky, V. F. J. Phys. Chem. 1992, 96, 8224. doi: 10.1021/j100200a006
 - 
			
                    [15]
                
			
(8) Connor, T. M.; McLauchlan, K. A. J. Phys. Chem. 1965, 69,1888. doi: 10.1021/j100890a018
 - 
			
                    [16]
                
			
(9) Epiotis, N. D. J. Am. Chem. Soc. 1973, 95, 3087. doi: 10.1021/ja00791a001
 - 
			
                    [17]
                
			
(10) Kollman, P. A. J. Am. Chem. Soc. 1974, 96, 4363. doi: 10.1021/ja00821a003
 - 
			
                    [18]
                
			
(11) Bemardi, F.; Bottoni, A.; Epiotis, N. D.; Guena, M. J. Am. Chem. Soc. 1978, 100, 6018. doi: 10.1021/ja00487a007
 - 
			
                    [19]
                
			
(12) (a) Cremer, D. J. Am. Chem. Soc. 1981, 103, 3633. doi: 10.1021/ja00403a003
 - 
			
                    [20]
                
			
(b) Cremer, D. Chem. Phys. Lett. 1981, 81, 481.
 - 
			
                    [21]
                
			
(13) Carlos, J. L.; Karl, R. R.; Bauer, S. H. J. Chem. Soc. Faraday Trans. 2 1974, 2, 177.
 - 
			
                    [22]
                
			
(14) Gandhi, S. R.; Benzel, M. A.; Dykstra, C. E.; Fukunaga, T.J. Phys. Chem. 1982, 86, 3121. doi: 10.1021/j100213a013
 - 
			
                    [23]
                
			
(15) Saebø, S.; Sellers, H. J. Phys. Chem. 1988, 92, 4269. doi: 10.1021/j100326a006
 - 
			
                    [24]
                
			
(16) Dixon, D. A.; Smart, B. E.; Fukunaga, T. Chem. Phys. Lett.1986, 125, 447. doi: 10.1016/0009-2614(86)87076-2
 - 
			
                    [25]
                
			
(17) Yamamoto, T.; Kaneno, D.; Tomoda, S. Chem. Lett. 2005, 34,1190. doi: 10.1246/cl.2005.1190
 - 
			
                    [26]
                
			
(18) Parr, R. G.; Yang,W. Density-Functional Theory of Atoms andMolecules. In International Series of Monographs on Chemistry;Clarendon Press: Oxford, England, 1989; Vol.16, p 333.
 - 
			
                    [27]
                
			
(19) Liu, S. B. J. Chem. Phys. 2007, 126, 244103. doi: 10.1063/1.2747247
 - 
			
                    [28]
                
			
(20) Liu, S. B.; vind, N.; Pedersen, L. G. J. Chem. Phys. 2008,129, 094104. doi: 10.1063/1.2976767
 - 
			
                    [29]
                
			
(21) Liu, S. B.; Hu, H.; Pedersen, L. G. J. Phys. Chem. A 2010, 114,5913. doi: 10.1021/jp101329f
 - 
			
                    [30]
                
			
(22) Ess, D. H.; Liu, S. B.; DeProft, F. J. Phys. Chem. A 2010, 114,12952. doi: 10.1021/jp108577g
 - 
			
                    [31]
                
			
(23) Tsirelson,V. G.; Stash, A. I.; Liu, S. B. J. Chem. Phys. 2010,133, 114110. doi: 10.1063/1.3492377
 - 
			
                    [32]
                
			
(24) Huang, Y.; Zhong, A. G.; Yang, Q. S.; Liu, S. B. J. Chem. Phys.2011, 134, 084103. doi: 10.1063/1.3555760
 - 
			
                    [33]
                
			
(25) Torrent-Sucarrat, M.; Liu, S. B.; DeProft, F. J. Phys. Chem. A2009, 113, 3698. doi: 10.1021/jp8096583
 - 
			
                    [34]
                
			
(26) Hohenberg, P.; Kohn,W. Phys. Rev. B 1964, 136, 864.doi: 10.1103/PhysRev.136.B864
 - 
			
                    [35]
                
			
(27) Becke, A. D. Modern Electronic Structure Theory; Yarkony, D.R. Ed.;World Scientific: River Edge, N. J., 1995; pp 1022-1046.
 - 
			
                    [36]
                
			
(28) Cohen, A. J.; Mori-Sánchez, P.; Yang,W. Science 2008, 321,792. doi: 10.1126/science.1158722
 - 
			
                    [37]
                
			
(29) Xu, H. Y.;Wang,W. Acta Phys. -Chim. Sin. 2011, 27, 2565.[许惠英, 王维. 物理化学学报, 2011, 27, 2565.] doi: 10.3866/PKU.WHXB20111127
 - 
			
                    [38]
                
			
(30) Bader, R. F.W.; Essén, H. J. Chem. Phys. 1984, 80, 1943. doi: 10.1063/1.446956
 - 
			
                    [39]
                
			
(31) Johnson, E. R.; Keinan, S.; Mori-Sánchez, P.; Contreras-García,J.; Cohen, A. J.; Yang,W. J. Am. Chem. Soc. 2010, 132, 6498.doi: 10.1021/ja100936w
 - 
			
                    [40]
                
			
(32) Geerlings, P.; DeProft, F.; Langenaeker,W. Chem. Rev. 2003,103, 1793. doi: 10.1021/cr990029p
 - 
			
                    [41]
                
			
(33) Liu, S. B. Acta Phys. -Chim. Sin. 2009, 25, 590. [刘述斌. 物理化学学报, 2009, 25, 590.] doi: 10.3866/PKU.WHXB20090332
 - 
			
                    [42]
                
			
(34) Woon, D. E.; Dunning, T. H., Jr. J. Chem. Phys. 1993, 98, 1358.doi: 10.1063/1.464303
 - 
			
                    [43]
                
			
(35) Dunning, T. H., Jr.; Hay, P. J. Modern Theoretical Chemistry;Schaefer, H. F., III. Ed.; Plenum: New York, 1976; Vol. 3, pp1-28.
 - 
			
                    [44]
                
			
(36) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian-09,Revision B.01; Gaussian Inc.:Wallingford, CT, 2009.
 - 
			
                    [45]
                
			
(37) NBO Version 3.1, Glendening, E. D.; Reed, A. E.; Carpenter, J.E.;Weinhold, F. doi: 10.3878/j.issn.1006-9585.2012.11212
 - 
			
                    [46]
                
			
(38) Valiev, M.; Bylaska, E. J.; vind, N.; Kowalski, K.; Straatsma,T. P.; van Dam, H. J. J.;Wang, D.; Nieplocha, J.; Apra, E.;Windus, T. L.; De Jong,W. A. Comput. Phys. Commun. 2010,181, 1477. doi: 10.1016/j.cpc.2010.04.018
 - 
			
                    [47]
                
			
(39) Dunning, T. H., Jr. J. Chem. Phys. 1989, 90, 1007. doi: 10.1063/1.456153
 - 
			
                    [48]
                
			
(40) NBO Version 5.0, Glendening, E. D.; Badenhoop, J. K.; Reed,A. E.; Carpenter, J. E.; Bohmann, J. A.; Morales, C. M.;Weinhold, F. (Theoretical Chemistry Institute, University ofWisconsin, Madison, WI, 2001). http://www.chem.wisc.edu/-nbo5.
 - 
			
                    [49]
                
			
(41) Weinhold, F.; Landis, C. Valency and Bonding: A Natural Bond Orbital Donor-Acceptor Perspective; Cambridge UniversityPress: UK, 2005.
 - 
			
                    [50]
                
			
(42) Contreras-García, J.; Johnson, E. R.; Keinan, S.; Chaudret, R.;Piquemal, J. P.; Beratan, D. N.; Yang,W. J. Chem. Theory Comput. 2011, 7, 625. doi: 10.1021/ct100641a
 - 
			
                    [51]
                
			
(43) Humphrey,W.; Dalke, A.; Schulten, K. J. Mol. Graphics 1996,14, 133.
 - 
			
                    [52]
                
			
(44) AIMAll (Version 11.08.23), Keith, T. A. TK Gristmill Software,Overland Park KS, USA, 2012 (aim.tkgristmill.com); Bader, R.F.W. Atoms inMolecules: AQuantum Theory; Oxford UniversityPress: Oxford, 1990; Popeplier, P. L.; Hall, P. Atoms in Molecules: An Introduction; London, 2000; Matta, C. F., Boyd, R. J. Eds.;The Quantum Theory of Atoms in Molecules: From Solid State to DNA and Drug Design;Wiley:Weinham, 2007.
 - 
			
                    [53]
                
			
(45) Feller, D.; Peterson, K. A.; Dixon, D. A. J. Phys. Chem. A 2011,115, 1440.
 - 
			
                    [54]
                
			
(46) (a) Liu, S. B. Phys. Rev. A 1996, 54, 1328. doi: 10.1103/PhysRevA.54.1328
 - 
			
                    [55]
                
			
(b) Liu, S. B.; Parr, R. G. Phys. Rev. A 1996, 53, 2211.
 - 
			
                    [56]
                
			
(c) Nagy, A.; Liu, S. B.; Parr, R. G. Phys. Rev. A 1999, 59, 3349.
 - 
			
                    [57]
                
			
(d) Liu, S. B.; Morrison, R. C.; Parr, R. G. J. Chem. Phys. 2006,125, 174109.
 - 
			
                    [58]
                
			
(47) (a) Liu, S. B.; Pedersen, L. G. J. Phys. Chem. A 2009, 113,3648. doi: 10.1021/jp811250r
 - 
			
                    [59]
                
			
(b) Liu, S. B.; Schauer, C. K.; Pedersen, L. G. J. Chem. Phys.2009, 131, 164107.
 - 
			
                    [60]
                
			
(c) Burger, S. K.; Liu, S. B.; Ayers, P.W. J. Phys. Chem. A 2011,115, 1293.
 - 
			
                    [61]
                
			
(d) Huang, Y.; Liu, L.; Liu,W.; Liu, S. G.; Liu, S. B. J. Phys. Chem. A 2011, 115, 14697.
 - 
			
                    [62]
                
			
(e) Huang, Y.; Liu, L.; Liu, S. B. Chem. Phys. Lett. 2012, 527,73.
 
 - 
			
                    [1]
                
			
 - 
	                	
						
						
						
						
	                 - 
	                	
- 
				[1]
				
Hao XU , Ruopeng LI , Peixia YANG , Anmin LIU , Jie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302
 - 
				[2]
				
Jie ZHAO , Huili ZHANG , Xiaoqing LU , Zhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213
 - 
				[3]
				
Jiaxun Wu , Mingde Li , Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098
 - 
				[4]
				
Meifeng Zhu , Jin Cheng , Kai Huang , Cheng Lian , Shouhong Xu , Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166
 - 
				[5]
				
Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093
 - 
				[6]
				
Kaifu Zhang , Shan Gao , Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045
 - 
				[7]
				
Xinwan Zhao , Yue Cao , Minjun Lei , Zhiliang Jin , Tsubaki Noritatsu . Constructing S-scheme heterojunctions by integrating covalent organic frameworks with transition metal sulfides for efficient noble-metal-free photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(12): 100152-0. doi: 10.1016/j.actphy.2025.100152
 - 
				[8]
				
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
 - 
				[9]
				
Yupeng TANG , Haiying YANG , Fan JIN , Nan LI . Hydrogen storage properties of C6S6Li6: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1827-1839. doi: 10.11862/CJIC.20240460
 - 
				[10]
				
Huiying Xu , Minghui Liang , Zhi Zhou , Hui Gao , Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011
 - 
				[11]
				
Cen Zhou , Biqiong Hong , Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086
 - 
				[12]
				
Wenwen Zhang , Peichao Zhang , Conghao Gai , Xiaoyun Chai , Yan Zou , Qingjie Zhao . Unveiling Kinetics at Natural Abundance: 13C NMR Isotope Effect Experiments. University Chemistry, 2025, 40(10): 203-207. doi: 10.12461/PKU.DXHX202411076
 - 
				[13]
				
Xingyuan Lu , Yutao Yao , Junjing Gu , Peifeng Su . Energy Decomposition Analysis and Its Application in the Many-Body Effect of Water Clusters. University Chemistry, 2025, 40(3): 100-107. doi: 10.12461/PKU.DXHX202405074
 - 
				[14]
				
Junyu Peng , Feng Wang , Hongmei Yuan , Xiaoli Sun . Exploration of the “Sheep-Flock Effect” Teaching Model Based on Dual Preview: Taking Instrumental Analysis Experiment Courses in Local Universities as an Example. University Chemistry, 2025, 40(9): 310-317. doi: 10.12461/PKU.DXHX202412098
 - 
				[15]
				
Yuxin CHEN , Yanni LING , Yuqing YAO , Keyi WANG , Linna LI , Xin ZHANG , Qin WANG , Hongdao LI , Wenmin WANG . Construction, structures, and interaction with DNA of two SmⅢ4 complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1141-1150. doi: 10.11862/CJIC.20240258
 - 
				[16]
				
Maitri Bhattacharjee , Rekha Boruah Smriti , R. N. Dutta Purkayastha , Waldemar Maniukiewicz , Shubhamoy Chowdhury , Debasish Maiti , Tamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007
 - 
				[17]
				
Weina Wang , Lixia Feng , Fengyi Liu , Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022
 - 
				[18]
				
Zhengkun QIN , Zicong PAN , Hui TIAN , Wanyi ZHANG , Mingxing SONG . A series of iridium(Ⅲ) complexes with fluorophenyl isoquinoline ligand and low-efficiency roll-off properties: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1235-1244. doi: 10.11862/CJIC.20240429
 - 
				[19]
				
Tongqi Ye , Yanqing Wang , Qi Wang , Huaiping Cong , Xianghua Kong , Yuewen Ye . Reform of Classical Thermodynamics Curriculum from the Perspective of Computational Chemistry. University Chemistry, 2025, 40(7): 387-392. doi: 10.12461/PKU.DXHX202409128
 - 
				[20]
				
Wei Sun , Yongjing Wang , Kun Xiang , Saishuai Bai , Haitao Wang , Jing Zou , Arramel , Jizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015
 
 - 
				[1]
				
 
Metrics
- PDF Downloads(876)
 - Abstract views(2620)
 - HTML views(32)
 
 
Login In
	                    
	                    
	                    
	                    
DownLoad: