Citation: ZHU Jun, ZHANG Yao-Hong, HU Lin-Lua, DAI Song-Yuan. Preparation of In2S3 Sensitized Solar Cells with Chemical Bath Deposition and Their Performance[J]. Acta Physico-Chimica Sinica, ;2013, 29(01): 89-94. doi: 10.3866/PKU.WHXB201211092 shu

Preparation of In2S3 Sensitized Solar Cells with Chemical Bath Deposition and Their Performance

  • Received Date: 9 October 2012
    Available Online: 9 November 2012

    Fund Project: 国家重点基础研究发展规划(973)(2011CBA00700) (973)(2011CBA00700) 国家高技术研究发展计划(863)(2011AA050527) (863)(2011AA050527)国家自然科学基金(21003130, 21103197, 21173227, 21173228)资助项目 (21003130, 21103197, 21173227, 21173228)

  • In2S3 is a stable semiconductor material with low toxicity. We prepared In2S3 sensitized solar cells using low-cost chemical bath deposition methodology. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM) were used to reveal the microstructure of the In2S3 sensitized TiO2 nanoporous films. Our results indicated that the deposition temperature has a remarkable effect on the morphology of In2S3 sensitized TiO2 films, which in turn affects the photovoltaic performance of devices. When the deposition temperature was low, the deposition reaction rate was slow, resulting in only minimal deposition. However, if the deposition temperature was increased too much, there was insufficient time for the In2S3 to be deposited within the internal pore structure of the TiO2 mesoporous films. The best homogeneous In2S3 sensitized TiO2 films were obtained with a deposition temperature of 40℃. At this temperature, the optical absorption of the resulting film was optimal and displayed the largest short circuit current density among the films examined. Moreover, the fill factor was also the best, approaching 65%. The best overall power conversion efficiency was 0.32%.

  • 加载中
    1. [1]

      (1) Hodes, G. J. Phys. Chem. C 2008, 112, 17778. doi: 10.1021/jp803310s

    2. [2]

      (2) Kamat, P. V. J. Phys. Chem. C 2008, 112, 18737. doi: 10.1021/jp806791s

    3. [3]

      (3) Kamat, P. V.; Tvrdy, K.; Baker, D. R.; Radich, J. G. Chem. Rev.2010, 110, 6664. doi: 10.1021/cr100243p

    4. [4]

      (4) Mora-Serö, I.; Bisquert, J. J. Phys. Chem. Lett. 2010, 1, 3046.doi: 10.1021/jz100863b

    5. [5]

      (5) Semonin, O.; Luther, J. M.; Choi, S.; Chen, H. Y.; Gao, J.;Nozik, A. J.; Beard, M. C. Science 2011, 334, 1530. doi: 10.1126/science.1209845

    6. [6]

      (6) Rühle, S.; Shalom, M.; Zaban, A. ChemPhysChem 2010, 11,2290. doi: 10.1002/cphc.201000069

    7. [7]

      (7) Shi, J. F.; Fan, Y.; Xu, X. Q.; Xu, G.; Chen, L. H. Acta Phys. -Chim. Sin. 2012, 28, 857. [史继富, 樊晔, 徐雪青,徐刚, 陈丽华. 物理化学学报, 2012, 28, 857.] doi: 10.3866/PKU.WHXB201202204

    8. [8]

      (8) Liu, Y.; Xu. H. Y.; Qian, Y. T. Crystal Growth & Design 2006, 6,1304. doi: 10.1021/cg0504298

    9. [9]

      (9) Hodes, G.; Cahen, D. Accounts Chem. Res. 2012, 45, 705. doi: 10.1021/ar200219h

    10. [10]

      (10) Qiu,W. M.; Xu, M. S.; Yang, X.; Chen, F.; Nan, Y. X.; Zhang, J.L.; Iwai, H.; Chen, H. Z. J. Mater. Chem. 2011, 21, 13327. doi: 10.1039/C1JM11616A

    11. [11]

      (11) Hara, K.; Sayama, K.; Arakawa, H. Solar Energy Mater. Solar Cells 2000, 62, 441. doi: 10.1016/S0927-0248(00)00027-1

    12. [12]

      (12) Sarkar, S. K.; Kim, J. Y.; ldstein, D. N.; Neale, N. R.; Zhu,K.; Elliott, C. M.; Frank, A. J.; George, S. M. J. Phys. Chem. C.2010, 114, 8032. doi: 10.1021/jp9086943

    13. [13]

      (13) Gan, X.; Li, X.; Gao, X.; Qiu, J.; Zhuge, F. Nanotechnology2011, 22, 305601. doi: 10.1088/0957-4484/22/30/305601

    14. [14]

      (14) Hu, L. H.; Dai, S. Y.;Weng, J.; Xiao, S. F.; Sui, Y. F.; Huang, Y.;Chen, S. H.; Kong, F. T.; Pan, X.; Liang, L. Y.;Wang, K. J.J. Phys. Chem. B 2007, 111, 358. doi: 10.1021/jp065541a

    15. [15]

      (15) Zhang, Y.; Zhu, J.; Yu, X.;Wei, J.; Hu, L.; Dai, S. Solar Energy2012, 86, 964. doi: 10.1016/j.solener.2012.01.006

    16. [16]

      (16) Rengaraj, S.; Venkataraj, S.; Tai, C.W.; Kim, Y.; Repo, E.;Sillanpaa, M. Langmuir 2011, 27, 5534. doi: 10.1021/la104780d

    17. [17]

      (17) Chai, B.; Peng, T. Y.; Zeng, P.; Mao, J. J. Mater. Chem. 2011,21, 14587. doi: 10.1039/C1JM11566A

    18. [18]

      (18) Kaufmann, C.; Bayon, R.; Bohne,W.; Röhrich, J.; Klenk, R.;Dobson, P. J. J Electro. Soc. 2002, 149, C1. doi: 10.1149/1.1419183

    19. [19]

      (19) Mora-Serö, I.; Giménez, S.; Fabregat-Santia , F.; Gémez, R.;Shen, Q.; Toyoda, T.; Bisquert, J. Accounts Chem. Res. 2009,42, 1848. doi: 10.1021/ar900134d

    20. [20]

      (20) Chakrapani, V.; Baker, D.; Kamat, P. V. J. Am. Chem. Soc. 2011,133, 967. doi: 10.1021/ja203131b

    21. [21]

      (21) Hod, I.; Tachan, Z.; Shalom, M.; Zaban, A. J. Phys. Chem. Lett.2011, 2, 1032. doi: 10.1021/jz200399n

    22. [22]

      (22) Zhang, Q. B.; Feng, Z. F.; Han, N. N.; Lin, L. L.; Zhou, J. Z.;Lin, Z. H. Acta Phys. -Chim. Sin. 2010, 26, 2927. [张桥保, 冯增芳, 韩楠楠, 林玲玲, 周剑章, 林仲华. 物理化学学报, 2010,26, 2927.] doi: 10.3866/PKU.WHXB20101113

    23. [23]

      (23) Diguna, L. J.; Shen, Q.; Kobayashi, J.; Toyoda, T. Appl. Phys. Lett. 2007, 91, 023116. doi: 10.1063/1.2757130

    24. [24]

      (24) Shen, Q.; Kobayashi, J.; Diguna, L. J.; Toyoda, T. J. Appl. Phys.2008, 103, 084304. doi: 10.1063/1.2903059

    25. [25]

      (25) nzález-Pedro, V.; Xu, X.; Mora-Seró, I.; Bisquert, J. ACS Nano 2010, 4, 5783. doi: 10.1021/nn101534y

    26. [26]

      (26) Musselman, K. P.; Marin, A.; Schmidt-Mende, L.;MacManus-Driscoll, J. L. Adv. Funct. Mater. 2012, 22, 2202.doi: 10.1002/adfm.201102263

    27. [27]

      (27) Boix, P. P.; Lee, Y. H.; Fabregat-Santia , F.; Im, S. H.;Mora-Serö, I.; Bisquert, J.; Seok, S., II. ACS Nano 2012, 6, 873.doi: 10.1021/nn204382k


  • 加载中
    1. [1]

      Tao Jiang Yuting Wang Lüjin Gao Yi Zou Bowen Zhu Li Chen Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057

    2. [2]

      Yinyin Qian Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051

    3. [3]

      Yipeng Zhou Chenxin Ran Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096

    4. [4]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    5. [5]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    6. [6]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    7. [7]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    8. [8]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    9. [9]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    10. [10]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    11. [11]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    12. [12]

      Hongyao Li Youyan Liu Luwei Dai Min Yang Qihui Wang . The Blessing of Indium Sulfide:Confronting the Narrow Path with Uric Acid. University Chemistry, 2024, 39(5): 325-335. doi: 10.3866/PKU.DXHX202311104

    13. [13]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    14. [14]

      Yanxin Wang Hongjuan Wang Yuren Shi Yunxia Yang . Application of Python for Visualizing in Structural Chemistry Teaching. University Chemistry, 2024, 39(3): 108-117. doi: 10.3866/PKU.DXHX202306005

    15. [15]

      Yingxian Wang Tianye Su Limiao Shen Jinping Gao Qinghe Wu . Introduction of Chinese Lacquer from the Perspective of Chemistry: Popularizing Chemistry in Lacquer and Inherit Lacquer Art. University Chemistry, 2024, 39(5): 371-379. doi: 10.3866/PKU.DXHX202312015

    16. [16]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    17. [17]

      Xu Liu Chengfang Liu Jie Huang Xiangchun Li Wenyong Lai . Research on the Application of Diversified Teaching Models in the Teaching of Physical Chemistry. University Chemistry, 2024, 39(8): 112-118. doi: 10.3866/PKU.DXHX202402021

    18. [18]

      Ruming Yuan Laiying Zhang Xiaoming Xu Pingping Wu Gang Fu . Application of Mathematica in Visualizing Physical Chemistry Formulas. University Chemistry, 2024, 39(8): 375-382. doi: 10.3866/PKU.DXHX202401030

    19. [19]

      Peng GENGGuangcan XIANGWen ZHANGHaichuang LANShuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155

    20. [20]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

Metrics
  • PDF Downloads(772)
  • Abstract views(2111)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return