Citation:
GUO Wei, WANG Kai, SHEN Yi-Hua, ZHANG He, WENG Tao, MA Ting-Li. A Simple Template Synthesis of Hierarchically Mesoporous TiO2 Microsphere for Dye-Sensitized Solar Cells[J]. Acta Physico-Chimica Sinica,
;2013, 29(01): 82-88.
doi:
10.3866/PKU.WHXB201211071
-
Mesoporous TiO2 microspheres were synthesized using a simple template method. The effect of the alkyl chain length on the synthesis and properties of the TiO2 microspheres was studied. A high power conversion efficiency (9.5%-10.1%) was attained by the dye-sensitized solar cells (DSCs) fabricated with the hierarchically mesoporous TiO2 microsphere films. The physical properties of the TiO2 microspheres were analyzed by X-ray diffraction (XRD), N2 physisorption (BET), and scanning electron microscopy (SEM). The results indicated the TiO2microsphere crystal structure to be in the pure anatase phase; the rough surface microstructure of the TiO2 microspheres, formed through accumulation of nanocrystalline (14-18 nm diameter) TiO2 particles, provides a proper large surface area and mesoporous structure. The hierarchically mesoporous TiO2 microspheres can form od paths for mass transport, and also act as light scattering layers for efficient light harvesting. Meanwhile, the rough TiO2 microsphere surface ensures a sufficient amount of dye uptake, and consequently improves the photo-generated electron density. Electrochemical impedance analysis demonstrated the advantage of using microspheres for mass transport in electrolytes.
-
-
-
[1]
(1) O'Regan B.; Grätzel, M. Nature 1991, 353, 737. doi: 10.1038/353737a0
-
[2]
(2) Yella, A.; Lee, H.W.; Tsao, H. N.; Yi, C.; Chandiran, A. K.;Nazeeruddin, M. K.; Diau, E.W. G.; Yeh, C. Y.; Zakeeruddin,S. M.; Grätzel, M. Science 2011, 334, 629. doi: 10.1126/science.1209688
-
[3]
(3) Jose, R.; Thavasi, V.; Ramakrishna, S. J. Am. Ceram. Soc. 2009,92, 289. doi: 10.1111/jace.2009.92.issue-2
-
[4]
(4) Zhuge, F.; Qiu, J. J.; Li, X. M.; Gao, X. D.; Gan, X.Y.;Yu,W. D.Adv. Mater. 2011, 23, 1330. doi: 10.1002/adma.v23.11
-
[5]
(5) Wei, Y. G.; Xu, C.; Xu, S.; Li, C.;Wu,W. Z.;Wang, Z. L. Nano Lett. 2010, 10, 2092. doi: 10.1021/nl1005433
-
[6]
(6) Marco, L. D.; Manca, M.; Giannuzzi, R.; Malara, F.; Melcarne,G.; Ciccarella, G.; Zama, I.; Cin lani, R.; Gigli, G. J. Phys. Chem. C 2010, 114, 4228. doi: 10.1021/jp910346d
-
[7]
(7) Nair, A. S.; Zhu, P.; Babu, V. J.; Yang, S.; Ramakrishnab, S.Phys. Chem. Chem. Phys. 2011, 13, 21248.
-
[8]
(8) Sun, Z. Q.; Kim, J. H.; Zhao, Y.; Bijarbooneh, F.; Malgras, V.;Lee, Y.; Kang, Y. M.; Dou, S. X. J. Am. Chem. Soc. 2011, 133 (48), 19314. doi: 10.1021/ja208468d
-
[9]
(9) Wang, Z. S.; Kawauchi, H.; Kashima, T.; Arakawa, H.Coordination Chemistry Reviews 2004, 248, 1381. doi: 10.1016/j.ccr.2004.03.006
-
[10]
(10) Grätzel, M. Journal of Sol-Gel Science and Technology 2001,22, 7. doi: 10.1023/A:1011273700573
-
[11]
(11) Gajjela, S. R.; Ananthanarayanan, K.; Yap, C.; Grätzel, M.;Balay, P. Energy Environ. Sci. 2010, 3, 838. doi: 10.1039/b921360k
-
[12]
(12) Ahn, S. H.; Koh, J. H.; Seo, J. A.; Kim, J. H. Chem. Commun.2010, 46, 1935. doi: 10.1039/b919215h
-
[13]
(13) Tiemann, M. Chem. Mater. 2008, 20, 961. doi: 10.1021/cm702050s
-
[14]
(14) Tatsuda, N.; Nakamura, T.; Yamamoto, D.; Yamazaki, T.;Shimada, T.; Inoue, H.; Yano, K. Chem. Mater. 2009, 21, 5252.doi: 10.1021/cm902247k
-
[15]
(15) Tétreault, N.; Arsenault, é.; Heiniger, L. P.; Soheilnia, N.;Brillet, J.; Moehl, T.; Zakeeruddin, S.; Ozin, G. A.; Grätzel, M.Nano Lett. 2011, 11, 4579. doi: 10.1021/nl201792r
-
[16]
(16) Zhao, Y. B.; Zhou, J. F.; Lü, Y.; Zhang, Z. J.; Dang, H. X. Acta Phys. -Chim. Sin. 2000, 11, 1035. [赵彦保, 周静芳, 吕莹,张治军, 党鸿辛. 物理化学学报, 2000, 11, 1035.] doi: 10.3866/PKU.WHXB20001113
-
[17]
(17) Caruso, R. A.; Chen, D. H.; Huang, F. Z.; Cheng, Y. B. Adv. Mater. 2009, 21, 2206. doi: 10.1002/adma.v21:21
-
[18]
(18) Cheng, Y. B.; Chen, D. H.; Cao, L.; Huang, F. Z.; Imperia, P.;Caruso, R. A. J Am. Chem. Soc. 2010, 132, 4438. doi: 10.1021/ja100040p
-
[19]
(19) Fang, X. M.; Ma, T. L.; Guan, G. Q.; Akiyama, M.; Kida, T.;Abe, E. J. Electroanal. Chem. 2004, 570, 257. doi: 10.1016/j.jelechem.2004.04.004
-
[20]
(20) Guo,W.; Shen, Y. H.; Boschloo, G.; Hagfeldt, A.; Ma, T. L.Electrochim. Acta 2011, 56, 4611. doi: 10.1016/j.electacta.2011.02.091
-
[21]
(21) Guo,W.; Shen, Y. H.;Wu, L. Q.; Gao, Y. R.; Ma, T. L. J. Phys. Chem. C 2011, 115, 21494. doi: 10.1021/jp2057496
-
[22]
(22) Kim, Y. J.; Lee, M. H.; Kim, H. J.; Lim, G.; Choi, Y. S.; Park, N.G.; Kim, K.; Lee,W. I. Adv. Mater. 2009, 21, 3668. doi: 10.1002/adma.v21:36
-
[23]
(23) Kern, R.; Sastrawan, R.; Ferber, J.; Stangl, R.; Luther, J.Electrochim. Acta 2002, 47, 4213. doi: 10.1016/S0013-4686(02)00444-9
-
[24]
(24) Fabregat-Santia , F.; Garcia-Belmonte, G.; Mora-Seró, I.;Bisquert, J. Phys. Chem. Chem. Phys. 2011, 13, 9083.
-
[25]
(25) Wang, Q.; Moser J. E.; Grätzel, M. J. Phys. Chem. B 2005, 109,14945. doi: 10.1021/jp052768h
-
[1]
-
-
-
[1]
Jiaxin Su , Jiaqi Zhang , Shuming Chai , Yankun Wang , Sibo Wang , Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012
-
[2]
Pengyu Dong , Yue Jiang , Zhengchi Yang , Licheng Liu , Gu Li , Xinyang Wen , Zhen Wang , Xinbo Shi , Guofu Zhou , Jun-Ming Liu , Jinwei Gao . NbSe2纳米片优化钙钛矿太阳能电池的埋底界面. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-. doi: 10.3866/PKU.WHXB202407025
-
[3]
Xinyuan Shi , Chenyangjiang , Changyu Zhai , Xuemei Lu , Jia Li , Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019
-
[4]
Xiufang Wang , Donglin Zhao , Kehua Zhang , Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025
-
[5]
Zeyuan WANG , Songzhi ZHENG , Hao LI , Jingbo WENG , Wei WANG , Yang WANG , Weihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021
-
[6]
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016
-
[7]
Zhuoyan Lv , Yangming Ding , Leilei Kang , Lin Li , Xiao Yan Liu , Aiqin Wang , Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015
-
[8]
Yipeng Zhou , Chenxin Ran , Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096
-
[9]
Yixuan Gao , Lingxing Zan , Wenlin Zhang , Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091
-
[10]
Jizhou Liu , Chenbin Ai , Chenrui Hu , Bei Cheng , Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006
-
[11]
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030
-
[12]
Peng ZHOU , Xiao CAI , Qingxiang MA , Xu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047
-
[13]
Zizheng LU , Wanyi SU , Qin SHI , Honghui PAN , Chuanqi ZHAO , Chengfeng HUANG , Jinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225
-
[14]
Jinghan ZHANG , Guanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249
-
[15]
Yikai Wang , Xiaolin Jiang , Haoming Song , Nan Wei , Yifan Wang , Xinjun Xu , Cuihong Li , Hao Lu , Yahui Liu , Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007
-
[16]
Yinyin Qian , Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051
-
[17]
Fanxin Kong , Hongzhi Wang , Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287
-
[18]
Linlu Bai , Wensen Li , Xiaoyu Chu , Haochun Yin , Yang Qu , Ekaterina Kozlova , Zhao-Di Yang , Liqiang Jing . Effects of nanosized Au on the interface of zinc phthalocyanine/TiO2 for CO2 photoreduction. Chinese Chemical Letters, 2025, 36(2): 109931-. doi: 10.1016/j.cclet.2024.109931
-
[19]
Lihua HUANG , Jian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315
-
[20]
Hongye Bai , Lihao Yu , Jinfu Xu , Xuliang Pang , Yajie Bai , Jianguo Cui , Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096
-
[1]
Metrics
- PDF Downloads(1091)
- Abstract views(2024)
- HTML views(20)