Citation: ZUO Yi, SONG Wan-Cang, WANG Meng-Li, XU Yong-Hai, WANG Xiang-Sheng, GUO Xin-Wen. Epoxidation of Propylene over Small-Crystal TS-1 Extrudate in a Fixed-Bed Reactor[J]. Acta Physico-Chimica Sinica, ;2013, 29(01): 183-190. doi: 10.3866/PKU.WHXB201211021
-
A small-crystal titanium silicalite-1 (TS-1) with a size of 600 nm×400 nm×250 nm was synthesized using a nano-sized TS-1 mother liquor as the seed in a tetrapropyl ammonium bromide (TPABr)-ethylamine hydrothermal system, and was extruded with silica sol. The obtained TS-1 extrudate was characterized by X-ray powder diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy, ultraviolet-visible (UV-Vis) diffuse reflectance spectroscopy, and nitrogen physisorption. The reaction conditions, including temperature, pressure, molar ratio of propylene/H2O2 (n(C3H6)/n(H2O2)), the weight hourly space velocity (WHSV) of propylene, methanol and H2O2, and the concentration of NH3·H2O, were systematically studied to identify ideal condition propylene epoxidation over small-crystal TS-1 extrudate. The reaction temperature had little effect on the propylene oxide (PO) yield under the conditions examined. The highest PO yield was obtained when the pressure was 2.0 MPa and the n(C3H6)/n(H2O2) was 4. The PO content in the product was maximized when the WHSVs of propylene, methanol and H2O2 was 0.93, 2.5 and 0.25 h-1respectively. A low concentration of NH3·H2O was beneficial for a high PO yield. Under the optimized condition, we compared catalytic performances of TS-1 with different crystal sizes and performed a long-term test over the small-crystal TS-1. The tests indicated that H2O2 conversion and PO selectivity could both reach 95%, even after 1000 h on stream.
-
-
[1]
(1) Kirk, R. O.; Dempsey, T. J. Kirk-Othmer Encyclopedia of Chemical Technology;Wiley: New York, 1982; p 246.
-
[2]
(2) Wulff, H. P.;Wattimena, F. Olefin Epoxidation. U.S. Pat.4021454, 1977.
-
[3]
(3) Taramasso, M.; Pere , G.; Notari, B. Preparation of PorousCrystalline Synthetic Material Comprised of Silicon andTitanium Oxides. U.S. Pat. 4410501, 1983.
-
[4]
(4) Fan,W. B.; Duan, R. G.; Yokoi, T.;Wu, P.; Kubota, Y.; Tatsumi,T. J. Am. Soc. Chem. 2008, 130, 10150. doi: 10.1021/ja7100399
-
[5]
(5) Yube, K.; Furuta, M.; Mae, K. Catal. Today 2007, 125, 56. doi: 10.1016/j.cattod.2007.03.017
-
[6]
(6) Zhuang, J. Q.; Ma, D.; Yan, Z. M.; Liu, X. M.; Han, X.W.; Bao,X. H.; Zhang, Y. H.; Guo, X.W.;Wang, X. S. Appl. Catal. A2004, 258, 1. doi: 10.1016/j.apcata.2003.06.002
-
[7]
(7) Lv, L.; Zhou, J. K.; Su, F.; Zhao, X. S. J. Phys. Chem. C 2007,111, 773. doi: 10.1021/jp056107w
-
[8]
(8) Laha, S. C.; Kumar, R. J. Catal. 2001, 204, 64. doi: 10.1006/jcat.2001.3352
-
[9]
(9) Li, Y. G.; Lee, Y. M.; Porter, J. F. J. Mater. Sci. 2002, 37, 1959.doi: 10.1023/A:1015234812360
-
[10]
(10) Barbera, D.; Cavani, F.; D'Alessandro, T.; Fornasari, G.; Guiditti,S.; Aloise, A.; Giordano, G.; Piumetti, M.; Bonelli, B.;Zanzottera, C. J. Catal. 2010, 275, 158. doi: 10.1016/j.jcat.2010.07.030
-
[11]
(11) Yu, J. K.; Li, Z.; Liu, Q.W. Chem. Propell. Poly. Mat. 2011, 9,8. [于剑昆, 李中, 刘青炜. 化学推进剂与高分子材料,2011, 9, 8.]
-
[12]
(12) Müller, U.; Steck,W. Stud. Surf. Sci. Catal. 1994, 84, 203. doi: 10.1016/S0167-2991(08)64115-4
-
[13]
(13) Shibata, M.; Gabelica, Z. Zeolites 1997, 19, 246. doi: 10.1016/S0144-2449(97)00078-X
-
[14]
(14) Zhang, H. J.; Liu, Y. M.; Jiao, Z.; He, M. Y.;Wu, P. Ind. Eng. Chem. Res. 2009, 48, 4334. doi: 10.1021/ie8016253
-
[15]
(15) Xu, F.; Dong, M.; u,W. Y.; Li, J. F.; Qin, Z. F.;Wang, J. G.;Fan,W. B. Microporous Mesoporous Mat. 2012, 163, 192. doi: 10.1016/j.micromeso.2012.07.030
-
[16]
(16) Chen, Y.;Wu, Y. L.; Zhang, Y. R.; Long, L.; Tao, L.; Yang, M.D.; Tang, N. J. Mol. Catal. A-Chem. 2012, 352, 102. doi: 10.1016/j.molcata.2011.10.020
-
[17]
(17) Bellussi, G.; Buonomo, F.; Esposito, A.; Clerici, M.; Romano,U.; Notari, B. Catalyst of Silicon and Titanium Having HighMechanical Strength and a Process for Its Preparation. U.S. Pat.4701428, 1987.
-
[18]
(18) Zuo, Y.;Wang, M. L.; Song,W. C.;Wang, X. S.; Guo, X.W.Ind. Eng. Chem. Res. 2012, 51, 10586. doi: 10.1021/ie300581z
-
[19]
(19) Zuo, Y.;Wang, X. S.; Guo, X.W. Microporous Mesoporous Mat. 2012, 162, 105. doi: 10.1016/j.micromeso.2012.06.016
-
[20]
(20) Wang, L. Q.;Wang, X. S.; Guo, X.W.; Li, G.; Xiu, J. H. Chin. J. Catal. 2001, 22, 513. [王丽琴, 王祥生, 郭新闻, 李钢,修景海. 催化学报, 2001, 22, 513.]
-
[21]
(21) Li, G.;Wang, X. S.; Yan, H. S.; Liu, Y. H.; Liu, X.W. Appl. Catal. A 2002, 236, 1. doi: 10.1016/S0926-860X(02)00288-0
-
[22]
(22) Thangaraj, A.; Kumar, R.; Mirajkar, S. P.; Ratnasamy, P.J. Catal. 1991, 130, 1. doi: 10.1016/0021-9517(91)90086-J
-
[23]
(23) Zhang, X. J.;Wang, Y.; Xin, F. Appl. Catal. A 2006, 307, 222.doi: 10.1016/j.apcata.2006.03.050
-
[24]
(24) Notestein, J. M.; Solovyov, A.; Andrini, L. R.; Requejo, F. G.;Katz, A.; Iglesia, E. J. Am. Soc. Chem. 2007, 129, 15585. doi: 10.1021/ja074614g
-
[25]
(25) Bordiga, S.; Damin, A.; Berlier, G.; Bonino, F.; Ricchiadi, G.;Zecchina, A.; Lamberti, C. Int. J. Mol. Sci. 2001, 2, 167. doi: 10.3390/i2050167
-
[26]
(26) Fraile, J. M.; Garcia, J. I.; Mayoral, J. A.; Vispe, E. J. Catal.2005, 233, 90. doi: 10.1016/j.jcat.2005.04.018
-
[27]
(27) Pere , C.; Carati, A.; Ingallina, P.; Mantegazza, M. A.; Bellussi,G. Appl. Catal. A 2001, 221, 63. doi: 10.1016/S0926-860X(01)00797-9
-
[28]
(28) Clerici, M. G.; Ingallina, P. J. Catal. 1993, 140, 71. doi: 10.1006/jcat.1993.1069
-
[1]
-
-
[1]
Guojie Xu , Fang Yu , Yunxia Wang , Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060
-
[2]
Endong YANG , Haoze TIAN , Ke ZHANG , Yongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369
-
[3]
Liyang ZHANG , Dongdong YANG , Ning LI , Yuanyu YANG , Qi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079
-
[4]
Chuanming GUO , Kaiyang ZHANG , Yun WU , Rui YAO , Qiang ZHAO , Jinping LI , Guang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459
-
[5]
Xin Li , Wanting Fu , Ruiqing Guan , Yue Yuan , Qinmei Zhong , Gang Yao , Sheng-Tao Yang , Liandong Jing , Song Bai . Nucleophiles promotes the decomposition of electrophilic functional groups of tetracycline in ZVI/H2O2 system: Efficiency and mechanism. Chinese Chemical Letters, 2024, 35(10): 109625-. doi: 10.1016/j.cclet.2024.109625
-
[6]
Tianlong Zhang , Rongling Zhang , Hongsheng Tang , Yan Li , Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006
-
[7]
Keweiyang Zhang , Zihan Fan , Liyuan Xiao , Haitao Long , Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084
-
[8]
Jing Wang , Zhongliao Wang , Jinfeng Zhang , Kai Dai . Single-layer crystalline triazine-based organic framework photocatalysts with different linking groups for H2O2 production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100202-100202. doi: 10.1016/j.cjsc.2023.100202
-
[9]
Zhenyu Hu , Zhenchun Yang , Shiqi Zeng , Kun Wang , Lina Li , Chun Hu , Yubao Zhao . Cationic surface polarization centers on ionic carbon nitride for efficient solar-driven H2O2 production and pollutant abatement. Chinese Chemical Letters, 2024, 35(10): 109526-. doi: 10.1016/j.cclet.2024.109526
-
[10]
Danqing Wu , Jiajun Liu , Tianyu Li , Dazhen Xu , Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087
-
[11]
Xingyang LI , Tianju LIU , Yang GAO , Dandan ZHANG , Yong ZHOU , Meng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026
-
[12]
Tong Zhou , Xue Liu , Liang Zhao , Mingtao Qiao , Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020
-
[13]
Juan Yuan , Bin Zhang , Jinping Wu , Mengfan Wang . Design of a Comprehensive Experiment on Preparation and Characterization of Cu2(Salen)2 Nanomaterials with Two Distinct Morphologies. University Chemistry, 2024, 39(10): 420-425. doi: 10.3866/PKU.DXHX202402014
-
[14]
Xinyu Yin , Haiyang Shi , Yu Wang , Xuefei Wang , Ping Wang , Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007
-
[15]
Zhenchun Yang , Bixiao Guo , Zhenyu Hu , Kun Wang , Jiahao Cui , Lina Li , Chun Hu , Yubao Zhao . Molecular engineering towards dual surface local polarization sites on poly(heptazine imide) framework for boosting H2O2 photo-production. Chinese Chemical Letters, 2024, 35(8): 109251-. doi: 10.1016/j.cclet.2023.109251
-
[16]
Xiaodan Wang , Yingnan Liu , Zhibin Liu , Zhongjian Li , Tao Zhang , Yi Cheng , Lecheng Lei , Bin Yang , Yang Hou . Highly efficient electrosynthesis of H2O2 in acidic electrolyte on metal-free heteroatoms co-doped carbon nanosheets and simultaneously promoting Fenton process. Chinese Chemical Letters, 2024, 35(7): 108926-. doi: 10.1016/j.cclet.2023.108926
-
[17]
Wei Zhong , Dan Zheng , Yuanxin Ou , Aiyun Meng , Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005
-
[18]
Guoqiang Chen , Zixuan Zheng , Wei Zhong , Guohong Wang , Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021
-
[19]
Tong Zhou , Jun Li , Zitian Wen , Yitian Chen , Hailing Li , Zhonghong Gao , Wenyun Wang , Fang Liu , Qing Feng , Zhen Li , Jinyi Yang , Min Liu , Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005
-
[20]
Ji-Quan Liu , Huilin Guo , Ying Yang , Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031
-
[1]
Metrics
- PDF Downloads(762)
- Abstract views(1877)
- HTML views(3)