Citation: CHEN Fu-Xiao, FAN Wei-Qiang, ZHOU Teng-Yun, HUANG Wei-Hong. Core-Shell Nanospheres (HP-Fe2O3@TiO2) with Hierarchical Porous Structures and Photocatalytic Properties[J]. Acta Physico-Chimica Sinica, ;2013, 29(01): 167-175. doi: 10.3866/PKU.WHXB201210291 shu

Core-Shell Nanospheres (HP-Fe2O3@TiO2) with Hierarchical Porous Structures and Photocatalytic Properties

  • Received Date: 16 September 2012
    Available Online: 29 October 2012

    Fund Project: 国家自然科学基金(21201085) (21201085)江苏省自然科学基金(BK2012294) (BK2012294)江苏大学本科科研立项基金(Y11A018)资助项目 (Y11A018)

  • Core-shell photocatalysts of hierarchical porous nanospheres (HP-Fe2O3@TiO2) have been designed and prepared using solvothermal and sol-gel methods. Transmission electron microscopy (TEM) images confirm that the obtained samples a hierarchical porous structure, which results from both the macroporous structure of the core (Fe2O3) and the mesoporous structure of the shell (TiO2). X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and nitrogen adsorption-desorption isotherms were employed to characterize the structure and properties of HP-Fe2O3@TiO2 nanospheres. We investigated the photocatalytic degradation (in the presence of H2O2) of methylene blue (MB) irradiated under visible and ultraviolet light. The observed photocatalytic performance of HP-Fe2O3@TiO2 nanospheres is attributed to the synergetic effects of the core-shell structure, which indicates that the TiO2 shell enhances the photocatalytic performance of α-Fe2O3. HP-Fe2O3@TiO2 (1 mL Ti(OC4H9)4 (TBT)) possesses the highest photodegradation reaction constant among all samples under visible light irradiation. Moreover, HP-Fe2O3@TiO2 (4 mL TBT) has an optimal monodisperse morphology and achieves high photocatalytic activity under ultraviolet light irradiation.

  • 加载中
    1. [1]

      (1) Zhao, Y. B.; Ma,W. H.; Li, Y.; Ji, H.W.; Chen, C. C.; Zhu, H.Y.; Zhao, J. C. Angew. Chem. Int. Edit. 2012, 51, 3188. doi: 10.1002/anie.v51.13

    2. [2]

      (2) Cong, Y.; Qin, Y.; Li, X. K.; Dong, Z. J.; Yuan, G. M.; Cui, Z.W. Acta Phys. -Chim. Sin. 2011, 27, 1509. [丛野, 秦云,李轩科, 董志军, 袁观明, 崔正威. 物理化学学报, 2011, 27,1509.] doi: 10.3866/PKU.WHXB20110624

    3. [3]

      (3) Ji, P. L.;Wang, J. G.; Zhu, X. L.; Kong, X. Z. Acta Phys. -Chim. Sin. 2012, 28, 2155. [姬平利, 王金刚, 朱晓丽, 孔祥正. 物理化学学报, 2012, 28, 2155.] doi: 10.3866/PKU.WHXB201206262

    4. [4]

      (4) Chen, C. C.; Ma,W. H.; Zhao, J. C. Chem. Soc. Rev. 2010, 39,4206. doi: 10.1039/b921692h

    5. [5]

      (5) Zhou, Q.; Yuan, B. L.; Xu, D. X.; Fu, M. L. Chin. J. Catal.2012, 33, 850. [周强, 苑宝玲, 许东兴, 付明来. 催化学报,2012, 33, 850.]

    6. [6]

      (6) Zhao, J. C.; Chen, C. C.; Ma,W. H. Topics in Catalysis 2005,35, 269. doi: 10.1007/s11244-005-3834-0

    7. [7]

      (7) Huang, Y. P.; Ma,W. H.; Li, J.; Cheng, M. M.; Zhao, J. C.;Wan,L. J.; Yu, J. C. J. Phys. Chem. B 2003, 107, 9409.

    8. [8]

      (8) Tang, J.; Zou, Z.; Ye, J. Angew. Chem. Int. Edit. 2004, 43, 4463.

    9. [9]

      (9) Xuan, S. H.; Jiang,W. Q.; ng, X. L.; Hu, Y.; Chen, Z. Y.J. Phys. Chem. C 2009, 113, 553. doi: 10.1021/jp8073859

    10. [10]

      (10) Dotan, H.; Sivula, K.; Grätzel, M.; Rothschild, A.;Warren, S. C.Energ. Environ. Sci. 2011, 4, 958. doi: 10.1039/c0ee00570c

    11. [11]

      (11) Mor, G. K.; Prakasam, H. E.; Varghese, O. K.; Shankar, K.;Grimes, C. A. Nano Lett. 2007, 7, 2356. doi: 10.1021/nl0710046

    12. [12]

      (12) Wang, Q.; Chen, C. C.; Ma,W. H.; Zhu, H. Y.; Zhao, J. C.Chem. -Eur. J. 2009, 15, 4765. doi: 10.1002/chem.v15:19

    13. [13]

      (13) Zhang, H. T.;Wu, X. B.;Wang, Y. M.; Chen, X. Y.; Li, Z. S.;Yua, T.; Ye, J. H.; Zou, Z. G. J. Phys. Chem. Solids 2007, 68,280. doi: 10.1016/j.jpcs.2006.11.007

    14. [14]

      (14) Liu, Y.; Yu, L.; Hu, Y.; Guo, C. F.; Zhang, F. M.;Wen, X.Nanoscale 2012, 4, 183. doi: 10.1039/c1nr11114k

    15. [15]

      (15) Yang, S. G.; Quan, X.; Li, X. Y.; Liu, Y.; Chen, S.; Chen, G. H.Phys. Chem. Chem. Phys. 2004, 6, 659.

    16. [16]

      (16) Yan,W.; Fan, H. Q.; Yang, C. Mater. Lett. 2011, 65, 1595. doi: 10.1016/j.matlet.2011.03.026

    17. [17]

      (17) Zhao, H.; Fu,W. Y.; Yang, H. B.; Xu, Y.; Zhao,W. Y.; Zhang, Y.Y.; Chen, H.; Jing, Q.; Qi, X. F.; Cao, J.; Zhou, X. M.; Li, Y. X.Appl. Phys. Lett. 2011, 257, 8778.

    18. [18]

      (18) Zhu, C. L.; Yu, H. L.; Zhang, Y.;Wang, T. S.; Ouyang, Q. Y.; Qi,L. H.; Chen, Y. J.; Xue, X. Y. ACS Appl. Mater. Inter. 2012, 4,665. doi: 10.1021/am201689x

    19. [19]

      (19) Zhong, L. S.; Hu, J. S.;Wan, L. J.; Song,W. G. Chem. Commun.2008, No. 10, 1184.

    20. [20]

      (20) Xu, J. S.; Zhu, Y. J. CrystEngComm. 2012, 14, 2702. doi: 10.1039/c2ce06473a

    21. [21]

      (21) Chen, J. I. L.; Von Freymann, G.; Choi, S. Y.; Kitaev, V.; Ozin,G. A. Adv. Mater. 2006, 18, 1915.

    22. [22]

      (22) Min, Y. L.; Zheng, F C.; Zhao, Y. G.; Chen, Y. C. Solid State Sci.2011, 13, 976. doi: 10.1016/j.solidstatesciences.2011.02.005

    23. [23]

      (23) Cha, H. G.; Kim, S. J.; Lee, K. J.; Jung, M. H.; Kang, Y. S.J. Phys. Chem. C 2011, 115, 19129. doi: 10.1021/jp206958g

    24. [24]

      (24) Deng, Y. H.; Qi, D.W.; Deng, C. H.; Zhang, X. M.; Zhao, D. Y.J. Am. Chem. Soc. 2008, 130, 28. doi: 10.1021/ja0777584

    25. [25]

      (25) Zhu, L. P.; Bing, N. C.;Wang, L. L.; Jin, H. Y.; Liao, G. H.;Wang, L. J. Dalton Transactions 2012, 41, 2959. doi: 10.1039/c2dt11822j

    26. [26]

      (26) Mo, S. D.; Ching,W. Y. Phys. Rev. B 1995, 51, 13023. doi: 10.1103/PhysRevB.51.13023

    27. [27]

      (27) Pere , C.;Wang, Y. H.; Durupthy, O.; Cassaignon, S.; Revel,R.; Jolivet, J. P. ACS Appl. Mater. Inter. 2012, 4, 752. doi: 10.1021/am201397n

    28. [28]

      (28) Kuznetsova, I. N.; Blaskov, V.; Stambolova, I.; Znaidi, L.;Kanaev, A. Mater. Lett. 2005, 59, 3820. doi: 10.1016/j.matlet.2005.07.019

    29. [29]

      (29) Yang, P.; Deng, T.; Zhao, D.; Feng, P.; Pine, D.; Chmelka, B. F.;Whitesides, G. M.; Stucky, G. D. Science 1998, 282, 2244. doi: 10.1126/science.282.5397.2244

    30. [30]

      (30) Yuan, Z. Y.; Su, B. L. J. Mater. Chem. 2006, 16, 663. doi: 10.1039/b512304f

    31. [31]

      (31) Miao, C. H.; Ji, S. L.; Xu, G. P.; Liu, G. D.; Zhang, L. D.; Ye, C.H. ACS Appl. Mater. Inter. 2012, 4, 4428. doi: 10.1021/am3011466

    32. [32]

      (32) Lazarus, M. S.; Sham, T. K. Chem. Phys. Lett. 1982, 92, 670.doi: 10.1016/0009-2614(82)83672-5

    33. [33]

      (33) Kruk, M.; Jaroniec, M. Chem. Mater. 2001, 13, 3169. doi: 10.1021/cm0101069

    34. [34]

      (34) Zhou, X. M.; Yang, H. C.;Wang, C. X.; Mao, X. B.;Wang, Y.S.; Yang, Y. L.; Liu, G. J. Phys. Chem. C 2010, 114, 17051.

    35. [35]

      (35) Yui, Y.; Ito, S.; Mizuguchi, J.; Ishikawa, Y.; Kiyanagi, R.; Noda,Y. Jpn. J. Appl. Phys. 2011, 50, 013003. doi: 10.1143/JJAP.50.013003

    36. [36]

      (36) Fan,W. Q.; Song, S. Y.; Feng, J.; Lei, Y. Q.; Zheng, G. L.;Zhang, H. J. J. Phys. Chem. C 2008, 112, 19939. doi: 10.1021/jp8081062

    37. [37]

      (37) Zhang, G. Y.; Feng, Y.; Xu, Y. Y.; Gao, D. Z.; Sun, Y. Q. Mater. Res. Bull. 2012, 47, 625. doi: 10.1016/j.materresbull.2011.12.032

    38. [38]

      (38) Pradhan, G. K.; Parida, K. M. ACS Appl. Mater. Inter. 2011, 3,317. doi: 10.1021/am100944b

    39. [39]

      (39) Tong, G. X.; Guan, J. G.; Xiao, Z. D.; Huang, X.; Guan, Y.J. Nanopart. Res. 2010, 12, 3025. doi: 10.1007/s11051-010-9897-2

    40. [40]

      (40) Peng, L. L.; Xie, T. F.; Lu, Y. C.; Fan, H. M.;Wang, D. J. Phys. Chem. Chem. Phys. 2010, 12, 8033.

    41. [41]

      (41) Wu, Q.; Ouyang, J. J.; Xie, K. P.; Sun, L.;Wang, M. Y.; Lin, C.J. J. Hazard. Mater. 2012, 410, 199.

    42. [42]

      (42) Zhu, Y. F.; Piscitelli, F.; Buonocore, G. G.; Lavorgna, M.;Amendola, E.; Ambrosio, L. ACS Appl. Mater. Inter. 2012, 4,150. doi: 10.1021/am201192e

    43. [43]

      (43) Pan, X.; Zhao, Y.; Liu, S.; Korzeniewski, C. L.;Wang, S.; Fan,Z. Y. ACS Appl. Mater. Inter. 2012, 4, 3944. doi: 10.1021/am300772t

    44. [44]

      (44) Xiong, S. L.; Xi, B. J.; Qian, Y. T. J. Phys. Chem. C 2010, 114,14029. doi: 10.1021/jp1049588

    45. [45]

      (45) Yang, C. J.; Peng, T. Y.; Deng, K. J.; Zan, L. Progress in Chemistry 2011, 23, 874. [杨昌军, 彭天右, 邓克俭, 昝菱.化学进展, 2011, 23, 874.]

    46. [46]

      (46) Ling, Y. C.;Wang, G. M.; Wheeler, D. A.; Zhang, J. Z.; Li, Y.Nano Lett. 2011, 11, 2119. doi: 10.1021/nl200708y


  • 加载中
    1. [1]

      Hongye Bai Lihao Yu Jinfu Xu Xuliang Pang Yajie Bai Jianguo Cui Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096

    2. [2]

      Maosen XuPengfei ZhuQinghong CaiMeichun BuChenghua ZhangHong WuYouzhou HeMin FuSiqi LiXingyan LiuIn-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524

    3. [3]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    4. [4]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    5. [5]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    6. [6]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    7. [7]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    8. [8]

      Lihua HUANGJian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315

    9. [9]

      Wenhao WangGuangpu ZhangQiufeng WangFancang MengHongbin JiaWei JiangQingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193

    10. [10]

      Mengli Xu Zhenmin Xu Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305

    11. [11]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    12. [12]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    13. [13]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    14. [14]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    15. [15]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    16. [16]

      Yifen HeChao QuNa RenDawei Liang . Enhanced degradation of refractory organics in ORR-EO system with a blue TiO2 nanotube array modified Ti-based Ni-Sb co-doped SnO2 anode. Chinese Chemical Letters, 2024, 35(8): 109262-. doi: 10.1016/j.cclet.2023.109262

    17. [17]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    18. [18]

      Shuangxi LiHuijun YuTianwei LanLiyi ShiDanhong ChengLupeng HanDengsong Zhang . NOx reduction against alkali poisoning over Ce(SO4)2-V2O5/TiO2 catalysts by constructing the Ce4+–SO42− pair sites. Chinese Chemical Letters, 2024, 35(5): 108240-. doi: 10.1016/j.cclet.2023.108240

    19. [19]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    20. [20]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

Metrics
  • PDF Downloads(1176)
  • Abstract views(5638)
  • HTML views(25)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return