Citation:
GU Lai-Yuan, GAO Bao-Jiao, FANG Xiao-Lin. Characterization of Immobilized Composite Catalysts of Cationic Metalloporphyrin and Heteropoly Anion in Oxidation of Ethyl Benzene by Molecular Oxygen[J]. Acta Physico-Chimica Sinica,
;2013, 29(01): 191-198.
doi:
10.3866/PKU.WHXB201210266
-
An immobilized cationic phenyl porphyrin was prepared with crosslinked polystyrene (CPS) microspheres as carriers via synthesis and immobilization. A kind of immobilized cationic cobalt porphyrin was obtained through a coordination reaction between the immobilized cationic phenyl porphyrin and the cobalt salt. In the composite reactions, phosphotungstic acid (HPW) and phosphomolybdic acid (HPMo) with Keggin structures were used as reagents, respectively, and the combination of the cationic cobalt porphyrin (CoP) with the heteropoly anions by electrostatic interaction led to the formation of the immobilized composite catalysts of CoPPW-CPS and CoPPMo-CPS. We then characterized these immobilized composite catalysts. The immobilized composite catalysts were used in the oxidation of ethylbenzene by molecular oxygen, and their catalytic characters were investigated. The results show that the immobilized composite catalysts possess high catalyst activity. They can transform ethyl benzene into acetophenone with high selectivity, and the yield of acetophenone after 12 h reaches 30.1%. The catalytic activity of the immobilized composite catalysts is 75% higher than that of the immobilized cobalt porphyrin. The catalytic activity of CoPPW-CPS is higher than that of CoPPMo-CPS. The cobalt porphyrin in the composite is the catalyst component as the heteropoly has no catalytic activity. However, the heteropoly anion has a protective effect on the metalloporphyrin against its deactivation during the catalytic reaction. In the oxidation reaction, there is an optimum addition for catalyst, and adding excessive catalyst inhibits its activity. The composite catalysts show od recycle properties.
-
-
-
[1]
(1) Rahiman, A. K.; Bharathi, K. S.; Sreedaran, S.; Rajesh, K.;Narayanan, V. Inorg. Chim. Acta 2009, 362, 1810. doi: 10.1016/j.ica.2008.08.019
-
[2]
(2) Ma, J. J.;Wu, J.; Gu, J.; Liu, L.; Zhang, D. G.; Xu, X. Y.; Yang,X. J.; Tong, Z.W. J. Mol. Catal. A: Chem. 2012, 357, 95. doi: 10.1016/j.molcata.2012.01.025
-
[3]
(3) Rahiman, A. K.; Rajesh, K.; Bharathi, K. S.; Sreedaran, S.;Narayanan, V. Appl. Catal. A: Gen. 2006, 314, 216. doi: 10.1016/j.apcata.2006.08.018
-
[4]
(4) Machado, G. S.; Castro, K. A. D. F.;Wypych, F.; Nakagaki, S.J. Mol. Catal. A: Chem. 2008, 283, 99. doi: 10.1016/j.molcata.2007.12.009
-
[5]
(5) Zhao, P.; Huang, J.W.; Ji, L. N. Spectrochim. Acta Part A 2012,88, 130. doi: 10.1016/j.saa.2011.12.017
-
[6]
(6) Serwicka, E. M.; Poltowicz, J.; Bahranowski, K.; Olejniczak,Z.; Jones,W. Appl. Catal. A: Gen. 2004, 275, 9. doi: 10.1016/j.apcata.2004.07.005
-
[7]
(7) Ye, T. X.; Ye, S. L.; Chen, D. M.; Chen, Q. A.; Qiu, B.; Chen, X.Spectrochim. Acta Part A 2012, 86, 467. doi: 10.1016/j.saa.2011.10.070
-
[8]
(8) Moghadam, M.; Tangestaninejad, S.; Mirkhani, V.;Mohammadpoor-Baltork, I.; Moosavifaret, M. J. Mol. Catal. A: Chem. 2009, 302, 68. doi: 10.1016/j.molcata.2008.11.036
-
[9]
(9) Rahiman, A. K.; Rajesh, K.; Bharathi, K. S.; Sreedaran, S.;Narayananet, V. Inorg. Chim. Acta 2009, 362, 1491. doi: 10.1016/j.ica.2008.07.011
-
[10]
(10) Poltowicz, J.; Serwicka, E. M.; Bastardo- nzalez, E.; Jones,W.; Mokaya, R. Appl. Catal. A: Gen. 2001, 218, 211. doi: 10.1016/S0926-860X(01)00647-0
-
[11]
(11) Vinhado, F. S.; Prado-Manso, C. M. C.; Sacco, H. C.; Iamamoto,Y. J. Mol. Catal. A: Chem. 2001, 174, 279. doi: 10.1016/S1381-1169(01)00200-X
-
[12]
(12) Huang, G.; Guo, C. C.; Tang, S. S. J. Mol. Catal. A: Chem.2007, 261, 125. doi: 10.1016/j.molcata.2006.08.014
-
[13]
(13) Mirkhani, V.; Moghadam, M.; Tangestaninejad, S.; Bahramian,B. Appl. Catal. A: Gen. 2006, 311, 43. doi: 10.1016/j.apcata.2006.05.043
-
[14]
(14) Poltowicz, J.; Pamin, K.; Haber, J. J. Mol. Catal. A: Chem.2006, 257, 154. doi: 10.1016/j.molcata.2006.04.070
-
[15]
(15) Halma, M.; Bail, A.;Wypych, F.; Nakagaki, S. J. Mol. Catal. A: Chem. 2006, 243, 44. doi: 10.1016/j.molcata.2005.08.019
-
[16]
(16) Nakagaki, S.; Halma, M.; Bail, A.; Arízaga, G. G. C.;Wypych,F. J. Colloid Interface Sci. 2005, 281, 417. doi: 10.1016/j.jcis.2004.08.098
-
[17]
(17) Kim, H.; Jung, J. C.; Park, D. R.; Baeck, S. H.; Song, I. K. Appl. Catal. A: Gen. 2007, 320, 159. doi: 10.1016/j.apcata.2007.01.034
-
[18]
(18) Yuan, C. Y.; Chen, J. Chin. J. Catal. 2011, 32, 1191. doi: 10.1016/S1872-2067(10)60236-7
-
[19]
(19) Gao, S. Y.; Cao, R.; Yan, C. P. J. Colloid Interface Sci. 2008,324, 156. doi: 10.1016/j.jcis.2008.05.011
-
[20]
(20) Souza, A. L.; Marques, L. A.; Eberlin, M. N.; Nascente, P. A. P.;Junior, P. S. P. H.; Leite, F. L.; Rodrigues-Filho, U. P. Thin Solid Films 2012, 520, 3574. doi: 10.1016/j.tsf.2011.12.069
-
[21]
(21) Gu, L. Y.; Gao, B. J.; Fang, X. L. Chemistry 2012, 75 (12),1114. [顾来沅, 高保娇, 房晓琳. 化学通报, 2012, 75 (12),1114.]
-
[22]
(22) Santos, I. C. M. S.; Rebelo, S. L. H.; Balula, M. S. S.; Martins,R. R. L.; Pereira, M. M. M. S.; Simões, M. M. Q.; Neves, M. G.P. M. S.; Cavaleiro, J. A. S.; Cavaleiro, A. M. V. J. Mol. Catal. A: Chem. 2005, 231, 35. doi: 10.1016/j.molcata.2004.12.021
-
[23]
(23) Haber, J.; Pamin, K.; Poltowicz, J. J. Mol. Catal. A: Chem.2004, 224, 153. doi: 10.1016/j.molcata.2004.07.031
-
[24]
(24) Guo, C. C.; Chu, M. F.; Liu, Q.; Liu, Y.; Guo, D. C.; Liu, X. Q.Appl. Catal. A: Gen. 2003, 246, 303. doi: 10.1016/S0926-860X(03)00061-9
-
[25]
(25) Tang, H.; Shen, C. G.; Lin, M. R.; Sen, A. Inorg. Chim. Acta2000, 300-302, 1109.
-
[26]
(26) Kharat, A. N.; Pendleton, P.; Badalyan, A.; Abedini, M.; Amini,M. M. J. Mol. Catal. A: Chem. 2001, 175, 277. doi: 10.1016/S1381-1169(01)00234-5
-
[27]
(27) Guo, C. C.; Liu, X. Q.; Liu, Y.; Liu, Q.; Chu, M. F.; Zhang, X.B. J. Mol. Catal. A: Chem. 2003, 192, 289. doi: 10.1016/S1381-1169(02)00449-1
-
[28]
(28) Chen, Y. J.; Gao, B. J.; Tian, P.; Ma, Y. X. Acta Chim. Sin. 2011,69, 1337. [陈英军, 高保娇, 田鹏, 马云霞. 化学学报, 2011,69, 1337.]
-
[29]
(29) Huang, G.; Luo, J.; Deng, C. C.; Guo, Y. A.; Zhao, S. K.; Zhou,H.;Wei, S. Appl. Catal. A: Gen. 2008, 338, 83. doi: 10.1016/j.apcata.2007.12.027
-
[1]
-
-
-
[1]
Lina Guo , Ruizhe Li , Chuang Sun , Xiaoli Luo , Yiqiu Shi , Hong Yuan , Shuxin Ouyang , Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002
-
[2]
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
-
[3]
Ran Yu , Chen Hu , Ruili Guo , Ruonan Liu , Lixing Xia , Cenyu Yang , Jianglan Shui . 杂多酸H3PW12O40高效催化MgH2储氢. Acta Physico-Chimica Sinica, 2025, 41(1): 2308032-. doi: 10.3866/PKU.WHXB202308032
-
[4]
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
-
[5]
Yang WANG , Xiaoqin ZHENG , Yang LIU , Kai ZHANG , Jiahui KOU , Linbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165
-
[6]
Hailian Tang , Siyuan Chen , Qiaoyun Liu , Guoyi Bai , Botao Qiao , Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004
-
[7]
Zhanggui DUAN , Yi PEI , Shanshan ZHENG , Zhaoyang WANG , Yongguang WANG , Junjie WANG , Yang HU , Chunxin LÜ , Wei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317
-
[8]
Ke Li , Chuang Liu , Jingping Li , Guohong Wang , Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009
-
[9]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
-
[10]
Zongfei YANG , Xiaosen ZHAO , Jing LI , Wenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306
-
[11]
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
-
[12]
Wenjun Yang , Qiaoling Tan , Wenjiao Xie , Xiaoyu Pan , Youyong Yuan . Construction and Characterization of Calcium Alginate Microparticle Drug Delivery System: A Novel Design and Teaching Practice in Polymer Experiments. University Chemistry, 2025, 40(3): 371-380. doi: 10.12461/PKU.DXHX202405150
-
[13]
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210
-
[14]
Zelong LIANG , Shijia QIN , Pengfei GUO , Hang XU , Bin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409
-
[15]
Xin Han , Zhihao Cheng , Jinfeng Zhang , Jie Liu , Cheng Zhong , Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023
-
[16]
Xiaofeng Zhu , Bingbing Xiao , Jiaxin Su , Shuai Wang , Qingran Zhang , Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005
-
[17]
Jinyao Du , Xingchao Zang , Ningning Xu , Yongjun Liu , Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039
-
[18]
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349
-
[19]
Endong YANG , Haoze TIAN , Ke ZHANG , Yongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369
-
[20]
.
CCS Chemistry | 超分子活化底物为自由基促进高效选择性光催化氧化
. CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.
-
[1]
Metrics
- PDF Downloads(661)
- Abstract views(1640)
- HTML views(13)