Citation: CAO Chen-Zhong, WU Ya-Xin. An Extended Istomin-Palm Model for Estimating the Enthalpies of Formation of the Two-Direction Extending Compounds R1-Y-R2[J]. Acta Physico-Chimica Sinica, ;2013, 29(01): 35-42. doi: 10.3866/PKU.WHXB201210261 shu

An Extended Istomin-Palm Model for Estimating the Enthalpies of Formation of the Two-Direction Extending Compounds R1-Y-R2

  • Received Date: 3 July 2012
    Available Online: 26 October 2012

    Fund Project: 国家自然科学基金(21072053) (21072053)湖南省教育厅科研基金(10K025)资助项目 (10K025)

  • Istomin and Palm proposed a model, ΔfH0(RX)=h[R]+h[X]+φ[R]φ[X], (the h[R] and h[X] are the contributions of alkyl R and substituent X to the ΔfH0(RX), respectively. φ[R]φ[X] represents the interaction of alkyl R and substituent X), to express the enthalpies of formation of monoderivatives of hydrocarbons ΔfH0(RX). However, in two-direction extending compounds R1-Y-R2, the Y substituent is attached to two alkyl groups (R1 and R2), and the intramolecular interactions are more complicated than that in monosubstituted alkanes. Thus, the Istomin-Palm model must be modified. In this work, the interactions among Y, R1, and R2 contributing to the enthalpy of formation, ΔfH0(R1-Y-R2), are divided into three parts: the interaction between R1Y and R2(φ[R2]φ[R1Y]), the interaction between YR2 and R1 (φ[R1]φ[YR2]), and the interaction between R1 and R2 (ψ[R1]ψ[R2]). These three interactions replace the φ[R]φ[X] term, and a new extended Istomin-Palm model, ΔfH0(R1-Y-R2)=h[R1]+h[R2]+h[Y] +φ[R1]φ[YR2]+φ[R2]φ[R1Y]+ψ[R1]ψ[R2], is proposed. In this model, h[Y] is the contribution of substituent Y to ΔfH0(R1-Y-R2). The h[R1] and h[R2] terms are the contributions of alkyls R1 and R2 to ΔfH0(R1-Y-R2). The last three terms are the total contribution of interactions among Y, R1, and R2. Furthermore, the interaction potential index IPI(X) reported in our recent work (Wu, Y. X.; Cao, C. Z.; Yuan, H. Chin. J. Chem. Phys. 2012, 25 (2), 153.) was employed to express the intrinsic interaction of Y with alkyl groups (φ[Y]), and two general expressions were established to estimate ΔfH0, in which one is for thioethers, secondary amines, ethers, and ketones, and the other is for esters. These two estimating equations give results, which are as accurate as G3 and G3MP2 models in calculating ΔfH0 for R1-Y-R2 compounds. Moreover, our method avoids time consuming calculations.

  • 加载中
    1. [1]

      (1) Wiberg, K. B.;Waldron, R. F. J. Am. Chem. Soc. 1991, 113,7 697. doi: 10.1021/ja00020a036

    2. [2]

      (2) Laurencelle, N.; Pacey, P. D. J. Am. Chem. Soc. 1993, 115, 625.doi: 10.1021/ja00055a035

    3. [3]

      (3) Milburn, R. K.; Rodriquez, C. F.; Hopkinson, A. C. J. Phys.Chem. B 1997, 101, 1837. doi: 10.1021/jp962303e

    4. [4]

      (4) Herndon,W. C.; Biedermann, P. U.; Agranat, I. J. Org. Chem.1998, 63, 7445. doi: 10.1021/jo981280s

    5. [5]

      (5) Zheng, K. C.; Kuang, D. B.; Yun, F. C.; He, F. ActaPhys. -Chim. Sin. 2000, 16, 133. [郑康成, 匡代彬, 云逢存,何峰. 物理化学学报, 2000, 16, 133.] doi: 10.3866/PKU.W HXB20000208

    6. [6]

      (6) Zheng, K. C.; Zhang, Z. Q.; Shen, Y.; Yun, F. C. ActaPhys. -Chim. Sin. 2001, 17, 448. [郑康成, 张仲钦, 沈勇,云逢存. 物理化学学报, 2001, 17, 448.] doi: 10.3866/PKU.W HXB20010514

    7. [7]

      (7) Sorkhabi, O.; Qi, F.; Rizvi, A. H.; Suits, A. G. J. Am. Chem. Soc.2001, 123, 671. doi: 10.1021/ja0017312

    8. [8]

      (8) Yang, F.;Wang, Z.; Huang, Y.; Ding, X. J. Chem. Inf. Comput.Sci. 2003, 43, 753. doi: 10.1021/ci025663+

    9. [9]

      (9) Yang, F.;Wang, Z.; Huang, Y.; Zhou, P. J. Chem. Inf. Comput.Sci. 2003, 43, 1337. doi: 10.1021/ci0340512

    10. [10]

      (10) Exner, O.; Böhm, S. J. Comput. Chem. 2004, 25, 1979. doi: 1 0.1002/jcc.v25:16

    11. [11]

      (11) Emel'yanenko, V. N.; Kabo, G. J.; Verevkin, S. P. J. Chem. Eng.Data 2006, 51, 79. doi: 10.1021/je050230z

    12. [12]

      (12) Cao, C. Z.; Liu, J. L. Acta Phys. -Chim. Sin. 2007, 23, 955.[ 曹晨忠, 刘金玲. 物理化学学报, 2007, 23, 955.] doi: 10.3866/P KU.WHXB20070632

    13. [13]

      (13) Bond, D. J. Org. Chem. 2007, 72, 7313. doi: 10.1021/jo071213a

    14. [14]

      (14) Thalladi, V. R.;Weiss, H. C.; Blalser, D.; Boese, R.; Nangia, A.;D esiraju, G. R. J. Am. Chem. Soc. 1998, 120, 8702. doi: 1 0.1021/ja981198e

    15. [15]

      (15) Glaser, R. J. Org. Chem. 2001, 66, 771. doi: 10.1021/jo001241s

    16. [16]

      (16) Ju, X. H.; Li, Y. M.; Xiao, H. M. J. Phys. Chem. A 2005, 109,9 34. doi: 10.1021/jp045071p

    17. [17]

      (17) Gung, B.W.; Zou, Y.; Xu, Z.; Amicangelo, J. C.; Irwin, D. G.;M a, S.; Zhou, H. C. J. Org. Chem. 2008, 73, 689. doi: 10.1021/j o702170j

    18. [18]

      (18) Mathieu, D. J. Chem. Theory Comput. 2012, 8, 1295. doi: 1 0.1021/ct2006083

    19. [19]

      (19) Jabloński, M. J. Phys. Chem. A 2012, 116, 3753. doi: 10.1021/j p300993b

    20. [20]

      (20) (a) Istomin, B. I.; Palm, V. A. Reakts. Sposobnost Organ.Soedin. (Tartu) 1971, 8, 845.

    21. [21]

      (b) Istomin, B. I.; Palm, V. A. Reakts. Sposobnost Organ.Soedin. (Tartu) 1972, 9, 433.

    22. [22]

      (c) Istomin, B. I.; Palm, V. A. Reakts. Sposobnost Organ.Soedin. (Tartu) 1972, 9, 469.

    23. [23]

      (d) Istomin, B. I.; Palm, V. A. Reakts. Sposobnost Organ.Soedin. (Tartu) 1972, 9, 847.

    24. [24]

      (21) Cao, C. Z.; Gao, S. Acta Phys. -Chim. Sin. 2005, 21, 1028.[ 曹晨忠, 高硕. 物理化学学报, 2005, 21, 1028.] doi: 10.3866/P KU.WHXB20050917

    25. [25]

      (22) Cao, C. Z.; Gao, S.; Zeng, R. J. J. Mol. Struct. -Theochem 2005,728, 85. doi: 10.1016/j.theochem.2005.05.008

    26. [26]

      (23) Cao, C. Z. QSAR Comb. Sci. 2008, 27, 555.

    27. [27]

      (24) Wu, Y. X.; Cao, C. Z.; Yuan, H. Chin. J. Chem. Phys. 2012, 25 (2), 153. doi: 10.1088/1674-0068/25/02/153-160

    28. [28]

      (25) Cao, C. Z.; Li, Z. L. J. Chem. Inf. Comput. Sci. 1998, 38, 1. doi: 1 0.1021/ci9601729

    29. [29]

      (26) Cao, C. Z. Substituent Effects in Organic Chemistry; ScienceP ress: Beijing, 2003. [曹晨忠. 有机化学中的取代基效应. 北京 : 科学出版社, 2003.]

    30. [30]

      (27) Cao, C. Z.; Liu, L. J. Chem. Inf. Comput. Sci. 2004, 44, 678.d oi: 10.1021/ci034266b

    31. [31]

      (28) Haynes,W. M. CRC Handbook of Chemistry and Physics, 91ste d.; CRC Press: Boca Raton, FL, 2010-2011.

    32. [32]

      (29) Domalski, E. S.; Hearing, E. D. J. Phys. Chem. Ref. Data 1993,22, 805. doi: 10.1063/1.555927


  • 加载中
    1. [1]

      Qiaowen CHANGKe ZHANGGuangying HUANGNuonan LIWeiping LIUFuquan BAICaixian YANYangyang FENGChuan ZUO . Syntheses, structures, and photo-physical properties of iridium phosphorescent complexes with phenylpyridine derivatives bearing different substituting groups. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 235-244. doi: 10.11862/CJIC.20240311

    2. [2]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    3. [3]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    4. [4]

      Huiying Xu Minghui Liang Zhi Zhou Hui Gao Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011

    5. [5]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    6. [6]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    7. [7]

      Yaqin Zheng Lian Zhuo Meng Li Chunying Rong . Enhancing Understanding of the Electronic Effect of Substituents on Benzene Rings Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 193-198. doi: 10.12461/PKU.DXHX202406119

    8. [8]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    9. [9]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    10. [10]

      Jinghua Wang Yanxin Yu Yanbiao Ren Yesheng Wang . Integration of Science and Education: Investigation of Tributyl Citrate Synthesis under the Promotion of Hydrate Molten Salts for Research and Innovation Training. University Chemistry, 2024, 39(11): 232-240. doi: 10.3866/PKU.DXHX202402057

    11. [11]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    12. [12]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    13. [13]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    14. [14]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    15. [15]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    16. [16]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    17. [17]

      Linhan Tian Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056

    18. [18]

      Yanan Jiang Yuchen Ma . Brief Discussion on the Electronic Exchange Interaction in Quantum Chemistry Computations. University Chemistry, 2025, 40(3): 10-15. doi: 10.12461/PKU.DXHX202402058

    19. [19]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    20. [20]

      Jinfeng Chu Lan Jin Yu-Fei Song . Exploration and Practice of Flipped Classroom in Inorganic Chemistry Experiment: a Case Study on the Preparation of Inorganic Crystalline Compounds. University Chemistry, 2024, 39(2): 248-254. doi: 10.3866/PKU.DXHX202308016

Metrics
  • PDF Downloads(635)
  • Abstract views(1965)
  • HTML views(67)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return