Citation: AL-SEHEMI Abdullah G., Al-AMRI Reem S. Abdulaziz, IRFAN Ahmad. Characterization and Density Functional Theory Investigations of 3-Monoacylaminoquinazolinone Derivatives[J]. Acta Physico-Chimica Sinica, ;2013, 29(01): 55-63. doi: 10.3866/PKU.WHXB201210151 shu

Characterization and Density Functional Theory Investigations of 3-Monoacylaminoquinazolinone Derivatives

  • Received Date: 4 July 2012
    Available Online: 15 October 2012

    Fund Project: AL-AMRI ReemS. Abdulaziz was supported by the King Abdul Aziz City of Science and Technology (KACST) (GSP-18-138). (KACST) (GSP-18-138)

  • Several 3-aminoquinazolin-4-(3H)-one derivatives were synthesized and characterized. Using proton nuclear magnetic resonance (NMR) spectra, we have investigated the barriers to rotation around the N-N bond as a function of temperature. Changes in the NMR spectra at high temperatures are explained in terms of hindered rotations of the N-N bond. Free energies of activation for the rate determining stereochemical process were calculated to be as high as 67-75 kJ·mol-1. Ground state molecular geometries and vibrational frequencies were calculated using the HF/6-31G** and B3LYP/6-31G** level of theories. The optimized bond lengths and bond angles are in od agreement with experimental values at both theoretical levels.

  • 加载中
    1. [1]

      (1) Panicker, C. Y.; Varghese, H. T.; Ambujakshan, K. R.; Mathew,S.; Ganguli, S.; Nanda, A. K.; Alsenoy, C. V. J. Raman Spectro.2009, 40, 1262. doi: 10.1002/jrs.v40:9

    2. [2]

      (2) El-Hiti, G. A. Spectro. Lett. 1999, 32, 671. doi: 10.1080/00387019909350016

    3. [3]

      (3) Pendergast,W.; Johnson, J. V.; Dickerson, S. H.; Dev, I. K.;Duch, D. S.; Ferone, R.; Hall,W. R.; Humphrey, J.; Kelly, J. M.;Wilson, D. C. J. Med. Chem. 1993, 36, 2279. doi: 10.1021/jm00068a004

    4. [4]

      (4) Alagarsamy, V.; Giridhar, R.; Yadav, H. R.; Revathi, R.;Rukmani, K.; De Clercq, E. Indian J. Pharm. Sci. 2006, 68, 532.doi: 10.4103/0250-474X.27840

    5. [5]

      (5) Gupta, D. P.; Ahmed, S.; Kumar, A.; Shankar, K. Indian J.Chem. 1988, 27, 1060.

    6. [6]

      (6) Jatav, V.; Mishra, P.; Kashaw, S.; Stables, J. P. Eur. J. Med.Chem. 2008, 43, 135. doi: 10.1016/j.ejmech.2007.02.004

    7. [7]

      (7) Joshi, V.; Chaurasia, R. P. Indian J. Chem. 1987, 26, 602.

    8. [8]

      (8) Prouse, I. R. Drugs Future 1993, 18, 475.

    9. [9]

      (9) Bhandari, S. V.; Deshmane, B. J.; Dangare, S. C.; re, S. T.;Raparti, V. T.; C.V. Khachane, C. V.; Sarkate, A. P.Pharmacologyonline 2008, 2, 604.

    10. [10]

      (10) Azza, M. R.; Eman, E. R.; Fatma, G. E. Arch. Pharm. 2004, 337,527.

    11. [11]

      (11) Fry, D.W.; Kraker, A. J.; McMichael, A.; Ambroso, L. A.;Nelson, J. M.; Leopold,W. R.; Connors, R.W.; Bridges, A. J.Science 1994, 265, 1093. doi: 10.1126/science.8066447

    12. [12]

      (12) Traxler, T. M.; Furet, P.; Mett, H.; Buchdunger, E.; T. Meyer, T.;Lydon, N. J. Med. Chem. 1996, 39, 2285. doi: 10.1021/jm960118j

    13. [13]

      (13) Somers, F.; Ouedrao , R.; Antoine, M. H; de Tullio, P.; Becker,B.; Fontaine, J.; Damas, J.; Dupont, L.; Ri , B.; Delarge, J.;Lebrun, P.; Pirotte, B. J. Med. Chem. 2001, 44, 2575. doi: 10.1021/jm0004648

    14. [14]

      (14) Alagarsamy, V.; Dhanabal, K.; Parthiban, P.; Anjana, G.; Deepa,G.; Murugesan, B.; Rajkumar, S.; Beevi, A. J. J. Pharm.Pharmacol. 2007, 59, 669.

    15. [15]

      (15) Pandey, V. K.; Tusi, S.; Tusi, Z.; Raghubir, R.; Dixit, M.; Joshi,M. N. Indian J. Chem. 2004, 43, 180.

    16. [16]

      (16) Kamal, A.; Devaiah, V.; Sankarajah, N.; Reddy, K. L. Synlett2006, 16, 2609.

    17. [17]

      (17) Kimber, K. M.; Yonno, L.; Hearlip, R.;Weichman, B. AgentActions 1993, 39, 677.

    18. [18]

      (18) Duplantier, A. J.; Cherg, J. B. Annu. Rep. Med. Chem. 1994, 29,73.

    19. [19]

      (19) Al-Sehemi, A. G.; Atkinson, R. S.; Fawcett, J.; Russell, D. R.Chem. Commun. 2000, 43.

    20. [20]

      (20) Al-Sehemi, A. G.; Atkinson, R. S.; Fawcett, J.; Russell, D. R.Tetrahedron Lett. 2000, 41, 2239. doi: 10.1016/S0040-4039(00)00138-6

    21. [21]

      (21) Al-Sehemi, A. G.; Atkinson, R. S.; Fawcett, J.; Russell, D. R.J. Chem. Soc. Perkin Trans. 2000, 1, 4413.

    22. [22]

      (22) Al-Sehemi, A. G.; Atkinson, R. S.; Fawcett, J. J. Chem. Soc.Perkin Trans. 2002, 1, 257.

    23. [23]

      (23) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 03,Revision C.02; Gaussian Inc.: PittsburghWallingford, CT, 2004.

    24. [24]

      (24) Irfan, A.; Al-Sehemi, A. G. J. Chem. Soc. Pak. 2012, 34, 350.

    25. [25]

      (25) Head- rdon, M.; Pople, J. A.; Frisch, M. J. Chem. Phys. Lett.1988, 153, 503.

    26. [26]

      (26) Frisch, M. J.; Head- rdon, M.; Pople, J. A. Chem. Phys. Lett.1990, 166, 275. doi: 10.1016/0009-2614(90)80029-D

    27. [27]

      (27) Head- rdon, M.; Head- rdon, T. Chem. Phys. Lett. 1994,220, 122.

    28. [28]

      (28) Saebo, S.; Almlof, J. Chem. Phys. Lett. 1989, 154, 83.

    29. [29]

      (29) Irfan, A.; Al-Sehemi, A. G. J. Mol. Model. 2012, 18, 4893. doi: 10.1007/s00894-012-1488-y.

    30. [30]

      (30) Zhurko, G. A.; Zhurko, D. A. ChemCraft version 1.5; 2005.available from http://www.chemcraftprog.com.

    31. [31]

      (31) Stolle, K. J. Prakt. Chem. 1904, 70, 427.

    32. [32]

      (32) Stolle, K. Chem. Ber. 1899, 32, 797.

    33. [33]

      (33) Young, J. A. J. Am. Chem. Soc. 1962, 84, 2105. doi: 10.1021/ja00870a021

    34. [34]

      (34) Stolle, K, Chem. Ber. 1912, 45, 282.

    35. [35]

      (35) Sandstrom, J. Dynamic NMR Spectroscopy; Elsevier Scienceand Technology: London, 1982; p 226.

    36. [36]

      (36) Al-Sehemi, A. G.; EL- gary T. M. Journal of MolecularStructure: Theochem 2009, 907, 66.

    37. [37]

      (37) Al-Sehemi, A. G.; Irfan, A.; Asiri, A. M.; Ammar, Y. A. J. Mol.Struc. 2012, 1019, 130. doi: 10.1016/j.molstruc.2012.02.035

    38. [38]

      (38) Arslan, H.; Florke, U.; Kulcu, N.; Binzet, G. Spectrochim. ActaA 2007, 68, 1347. doi: 10.1016/j.saa.2007.02.015

    39. [39]

      (39) Al-Sehemi, A. G.; Al-Amri, R.; Irfan, A. J. Chem. Soc. Pak.2012, accepted.

    40. [40]

      (40) Soni, P. L. Textbook of Inorganic Chemistry; Sultan Chand &Sons: New Delhi, 1984.

    41. [41]

      (41) Foresman, J. B.; Frisch, E. Exploring Chemistry with ElectronicStructure Methods: A Guide to Using Gaussian; Gaussian:Pittsburg, PA, 1995.

    42. [42]

      (42) Mayo, D.W.; Miller, F. A.; Hannah, R.W. Course Notes on theInterpretation of Infrared and Raman Spectra; Wiley & SonsInc.: Hoboken, NJ, USA, 2004.

    43. [43]

      (43) Engasser, J. M.; Horvath, C. Biochem. J. 1975, 45, 43158.

    44. [44]

      (44) Crane, L. G.;Wang, D.; Sears, L. M.; Heynz, B.; Carron, K.Anal. Chem. 1995, 67, 360. doi: 10.1021/ac00098a021

    45. [45]

      (45) Bezzerra, A. C. S.; De Sa, E. L.; Nart, F. C. J. Phys. Chem.1997, 101, 6443. doi: 10.1021/jp9700793

    46. [46]

      (46) El-Behery, M.; El-Twigry, H. Spectrochim. Acta A 2007, 66, 28.doi: 10.1016/j.saa.2006.02.017

    47. [47]

      (47) Sundaraganesan, N.; Ayyappan, S.; Umamaheswari, H.; Joshua,B. D. Spectrochim. Acta A 2007, 66, 17. doi: 10.1016/j.saa.2006.02.015

    48. [48]

      (48) Panicker, C. Y.; Varghese, H. T.; Ambujakshan, K. R.; Mathew,S.; Ganguli, S.; Nanda, A. K.; Alsenoy, C. V.; Mary, Y. S.J. Mol. Struct. 2010, 963, 137. doi: 10.1016/j.molstruc.2009.10.026270


  • 加载中
    1. [1]

      Yuxiang Zhang Jia Zhao Sen Lin . Nitrogen doping retrofits the coordination environment of copper single-atom catalysts for deep CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100415-100415. doi: 10.1016/j.cjsc.2024.100415

    2. [2]

      Wei Chen Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412

    3. [3]

      Lingling SuQunyan WuCongzhi WangJianhui LanWeiqun Shi . Theoretical design of polyazole based ligands for the separation of Am(Ⅲ)/Eu(Ⅲ). Chinese Chemical Letters, 2024, 35(8): 109402-. doi: 10.1016/j.cclet.2023.109402

    4. [4]

      Yu-Hang LiShuai GaoLu ZhangHanchun ChenChong-Chen WangHaodong Ji . Insights on selective Pb adsorption via O 2p orbit in UiO-66 containing rich-zirconium vacancies. Chinese Chemical Letters, 2024, 35(8): 109894-. doi: 10.1016/j.cclet.2024.109894

    5. [5]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    6. [6]

      Jiajun WangGuolin YiShengling GuoJianing WangShujuan LiKe XuWeiyi WangShulai Lei . Computational design of bimetallic TM2@g-C9N4 electrocatalysts for enhanced CO reduction toward C2 products. Chinese Chemical Letters, 2024, 35(7): 109050-. doi: 10.1016/j.cclet.2023.109050

    7. [7]

      Fanjun KongYixin GeShi TaoZhengqiu YuanChen LuZhida HanLianghao YuBin Qian . Engineering and understanding SnS0.5Se0.5@N/S/Se triple-doped carbon nanofibers for enhanced sodium-ion batteries. Chinese Chemical Letters, 2024, 35(4): 108552-. doi: 10.1016/j.cclet.2023.108552

    8. [8]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    9. [9]

      Runze Liu Yankai Bian Weili Dai . Qualitative and quantitative analysis of Brønsted and Lewis acid sites in zeolites: A combined probe-assisted 1H MAS NMR and NH3-TPD investigation. Chinese Journal of Structural Chemistry, 2024, 43(4): 100250-100250. doi: 10.1016/j.cjsc.2024.100250

    10. [10]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    11. [11]

      Xinzhi Ding Chong Liu Jing Niu Nan Chen Shutao Xu Yingxu Wei Zhongmin Liu . Solid-state NMR study of the stability of MOR framework aluminum. Chinese Journal of Structural Chemistry, 2024, 43(4): 100247-100247. doi: 10.1016/j.cjsc.2024.100247

    12. [12]

      Shiqi PengYongfang RaoTan LiYufei ZhangJun-ji CaoShuncheng LeeYu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219

    13. [13]

      A-Yang WangSheng-Hua ZhouMao-Yin RanXin-Tao WuHua LinQi-Long Zhu . Regulating the key performance parameters for Hg-based IR NLO chalcogenides via bandgap engineering strategy. Chinese Chemical Letters, 2024, 35(10): 109377-. doi: 10.1016/j.cclet.2023.109377

    14. [14]

      Ling-Hao ZhaoHai-Wei YanJian-Shuang JiangXu ZhangXiang YuanYa-Nan YangPei-Cheng Zhang . Effective assignment of positional isomers in dimeric shikonin and its analogs by 1H NMR spectroscopy. Chinese Chemical Letters, 2024, 35(5): 108863-. doi: 10.1016/j.cclet.2023.108863

    15. [15]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    16. [16]

      Huyi Yu Renshu Huang Qian Liu Xingfa Chen Tianqi Yu Haiquan Wang Xincheng Liang Shibin Yin . Te-doped Fe3O4 flower enabling low overpotential cycling of Li-CO2 batteries at high current density. Chinese Journal of Structural Chemistry, 2024, 43(3): 100253-100253. doi: 10.1016/j.cjsc.2024.100253

    17. [17]

      Hengying XiangNanping DengLu GaoWen YuBowen ChengWeimin Kang . 3D core-shell nanofibers framework and functional ceramic nanoparticles synergistically reinforced composite polymer electrolytes for high-performance all-solid-state lithium metal battery. Chinese Chemical Letters, 2024, 35(8): 109182-. doi: 10.1016/j.cclet.2023.109182

    18. [18]

      Yunfei Shen Long Chen . Gradient imprinted Zn metal anodes assist dendrites-free at high current density/capacity. Chinese Journal of Structural Chemistry, 2024, 43(10): 100321-100321. doi: 10.1016/j.cjsc.2024.100321

    19. [19]

      Uttam Pandurang Patil . Porous carbon catalysis in sustainable synthesis of functional heterocycles: An overview. Chinese Chemical Letters, 2024, 35(8): 109472-. doi: 10.1016/j.cclet.2023.109472

    20. [20]

      Aolei TanXiaoxiao Ma . Exploring the functional roles of small-molecule metabolites in disease research: Recent advancements in metabolomics. Chinese Chemical Letters, 2024, 35(8): 109276-. doi: 10.1016/j.cclet.2023.109276

Metrics
  • PDF Downloads(802)
  • Abstract views(4457)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return