Citation: SONG Hong-Juan, ZHANG Meng-Ying, SUN Xiu-Xin, QIU Yong-Qing, . Nonlinear Optical Properties of a Series of 6,12-Diethynylindeno[1,2-b]fluorene Derivatives[J]. Acta Physico-Chimica Sinica doi: 10.3866/PKU.WHXB201209283 shu

Nonlinear Optical Properties of a Series of 6,12-Diethynylindeno[1,2-b]fluorene Derivatives

  • Corresponding author:qiuyq466@nenu.edu.cn
  • Received Date: 11 June 2012
    Available Online: 28 September 2012

    Fund Project: 国家自然科学基金(21173035) (21173035)吉林省自然科学基金(20101154)资助项目 (20101154)

  • The polarizabilities (αs) and second hyperpolarizabilities (γs) of a series of 6,12-diethynylindeno[1,2-b]fluorene derivatives were investigated by the density functional theory CAM-B3LYP method. The calculated results indicate that these molecules possess considerably large second hyperpolarizabilities. Replacing the 6,12-hydrogen atoms on indeno[1,2-b]fluorene molecules by ethynyl silyl or oxygen atoms results in a change in the geometry of the molecular structure, which affects the nonlinear optical (NLO) properties. Introducing ethynyl silyl groups into the molecules can increase the αs and γs values, while these values decrease introducing oxygen atoms into the molecules. Also, the γs values depend on the 2, 8-disubstituted R groups (R=H, F, CH3) of the indeno[1,2-b]fluorene molecules. When R is methyl, the molecule has much larger αs and γs values. Moreover, according to time-dependent density functional theory calculations on the indeno[1,2-b]fluorene series, the maximum absorption wavelength of the ethynyl silyl derivatives display a bathochromic shift due to increasing conjugation, while a blue shift of the maximum absorption wavelengths are observed in the oxygen-substituted derivatives because the conjugation decreases as the molecular structure is distorted.

  • 
    1. [1]

      (1) Allis, D. G.; Spencer, J. T. J. Organomet. Chem. 2000, 614, 309.doi: 10.1016/S0022-328X(00)00589-1

    2. [2]

      (2) Zhang, X. L.; Li, M.; Shi, Z. S.; Cui, Z. C. Mater. Lett. 2011, 65,1404. doi: 10.1016/j.matlet.2011.02.014

    3. [3]

      (3) de la Torre, G.; Vázquez, P.; Agulló-López, F.; Torres, T. Chem. Rev. 2004, 104, 3723. doi: 10.1021/cr030206t

    4. [4]

      (4) Coe, B. J.; Harris, J. A.; Brunschwig, B. S.; Asselberghs, I.;Clays, K.; Garin, J.; Orduna, J. J. Am. Chem. Soc. 2005, 127,13399. doi: 10.1021/ja053879x

    5. [5]

      (5) Hoeben, F. J. M.; Jonkheijm, P.; Meijer, E.W.; Schenning, A. P.H. J. Chem. Rev. 2005, 105, 1491. doi: 10.1021/cr030070z

    6. [6]

      (6) Qiu, Y. Q.; Fan, H. L.; Sun, S. L.; Liu, C. G.; Su, Z. M. J. Phys. Chem. A 2008, 112, 83. doi: 10.1021/jp073907t

    7. [7]

      (7) Clays, K.; Coe, B. J. Chem. Mater. 2003, 15, 642. doi: 10.1021/cm0212111

    8. [8]

      (8) Gudbjartson, H.; Biradha, K.; Poirier, K. M.; Zaworotko, M. J.J. Am. Chem. Soc. 1999, 121, 2599. doi: 10.1021/ja982577a

    9. [9]

      (9) Xie, H. Q.; Liu, Z. H.; Huang, X. D.; Guo, J. S. Eur. Polym. J.2001, 37, 497. doi: 10.1016/S0014-3057(00)00146-4

    10. [10]

      (10) Yuan, M. S.; Fang, Q.; Liu, Z. Q.; Guo, J. I. P.; Chen, H. Y.; Yu,W. T.; Xue, G.; Liu, D. S. J. Org. Chem. 2006, 71, 7858. doi: 10.1021/jo061210i

    11. [11]

      (11) Allard, S.; Forster, M.; Souharce, B.; Thiem, H.; Scherf, U.Angew. Chem. Int. Edit. 2008, 47, 4070. doi: 10.1002/anie.200701920

    12. [12]

      (12) Steckler, T. T.; Zhang, X.; Hwang, J.; Honeyager, R.; Ohira, S.;Zhang, X. H.; Grant, A.; Ellinger, S.; Odom, S. A.; Sweat, D.;Tanner, D. B.; Rinzler, A. G.; Barlow, S.; Bredas, J. L.;Kippelen, B.; Marder, S. R.; Reynolds, J. R. J. Am. Chem. Soc.2009, 131, 2824. doi: 10.1021/ja809372u

    13. [13]

      (13) Perepichka, B. I. F.; Perepichka, D. F.; Meng, H.;Wudl, F. Adv. Mater. 2005, 17, 2281. doi: 10.1002/adma.200500461

    14. [14]

      (14) Veinot, J. G. C.; Marks, T. J. Accounts Chem. Res. 2005, 38,632. doi: 10.1021/ar030210r

    15. [15]

      (15) Scherf, U.; Gutacker, A.; Koenen, N. Accounts Chem. Res. 2008,41, 1086. doi: 10.1021/ar7002539

    16. [16]

      (16) Yesodha, S. K.; Sadashiva Pillai, C. K.; Tsutsumi, N. Prog. Polym. Sci. 2004, 29, 45. doi: 10.1016/j.progpolymsci.2003.07.002

    17. [17]

      (17) Haley, M. M.; Tykwinski, R. R. Function Organic Materials;Wiley-VCH:Weinheim, 2006.

    18. [18]

      (18) Mullen, K.; Scherf, U. Organic Light Emitting Devices: Synthesis Properties and Applications; Wiley-VCH:Weinheim,2006.

    19. [19]

      (19) Müller, T. J. J.; Bunz, U. H. F. Carbon-Rich Compounds;Wiley-VCH:Weinheim, 2007.

    20. [20]

      (20) Kim, J.; Kim, S. H.; Jung, I. H.; Jeong, E.; Xia, Y.; Cho, S.;Hwang, I.W.; Lee, K.; Suh, H.; Shim, H. K.;Woo, H. Y.J. Mater. Chem. 2010, 20, 1577. doi: 10.1039/b919033c

    21. [21]

      (21) Chase, D. T.; Fix, A. G.; Rose, B. D.;Weber, C. D.; Nobusue,S.; Stockwell, C. E.; Zakharov, L. N.; Lonergan, M. C.; Haley,M. M. Angew. Chem. Int. Edit. 2011, 50, 11103. doi: 10.1002/anie.v50.47

    22. [22]

      (22) Sun, X. X.; Liu, Y.; Zhao, H. B.; Sun, S. L.; Liu, C. G.; Qiu, Y.Q. Acta Phys. -Chim. Sin. 2011, 27, 315. [孙秀欣, 刘艳, 赵海波, 孙世玲, 刘春光, 仇永清. 物理化学学报, 2011, 27, 315.]doi: 10.3866/PKU.WHXB20110236

    23. [23]

      (23) Sun, S. L.; Qin, C. S.; Qiu, Y. Q.; Yang, G. C.; Su, Z. M.J. Organomet. Chem. 2009, 694, 1266. doi: 10.1016/j.jorganchem.2008.11.053

    24. [24]

      (24) Becke, A. D. J. Chem. Phys. 1993, 98, 5648. doi: 10.1063/1.464913

    25. [25]

      (25) Lee, C.; Yang,W.; Parr, R. G. Phys. Rev. B 1988, 37, 785. doi: 10.1103/PhysRevB.37.785

    26. [26]

      (26) Dehu, C.; Meyers, F.; Bredas, J. L. J. Am. Chem. Soc. 1993, 115,6198. doi: 10.1021/ja00067a039

    27. [27]

      (27) Sim, F.; Chin, S.; Dupuis, M.; Rice, J. E. J. Phys. Chem. 1993,97, 1158. doi: 10.1021/j100108a010

    28. [28]

      (28) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 09 W, Revision A.02; Gaussian Inc.:Wallingford, CT, 2009.

    29. [29]

      (29) McLean, A. D.; Yoshimine, M. J. Chem. Phys. 1967, 47, 1927.doi: 10.1063/1.1712220

    30. [30]

      (30) Mendes, P. J.; Silva, T. J. L.; Carvalho, A. J. P.; Ramalho, J. P. P.J. Mol. Struct.: Theochem 2010, 946, 33. doi: 10.1016/j.theochem.2010.01.029

    31. [31]

      (31) Tran, K.; Scott, G.W.; Funk, D. J.; Moore, D. S. J. Phys. Chem.1996, 100, 11863. doi: 10.1021/jp960447n


    1. [1]

      (1) Allis, D. G.; Spencer, J. T. J. Organomet. Chem. 2000, 614, 309.doi: 10.1016/S0022-328X(00)00589-1

    2. [2]

      (2) Zhang, X. L.; Li, M.; Shi, Z. S.; Cui, Z. C. Mater. Lett. 2011, 65,1404. doi: 10.1016/j.matlet.2011.02.014

    3. [3]

      (3) de la Torre, G.; Vázquez, P.; Agulló-López, F.; Torres, T. Chem. Rev. 2004, 104, 3723. doi: 10.1021/cr030206t

    4. [4]

      (4) Coe, B. J.; Harris, J. A.; Brunschwig, B. S.; Asselberghs, I.;Clays, K.; Garin, J.; Orduna, J. J. Am. Chem. Soc. 2005, 127,13399. doi: 10.1021/ja053879x

    5. [5]

      (5) Hoeben, F. J. M.; Jonkheijm, P.; Meijer, E.W.; Schenning, A. P.H. J. Chem. Rev. 2005, 105, 1491. doi: 10.1021/cr030070z

    6. [6]

      (6) Qiu, Y. Q.; Fan, H. L.; Sun, S. L.; Liu, C. G.; Su, Z. M. J. Phys. Chem. A 2008, 112, 83. doi: 10.1021/jp073907t

    7. [7]

      (7) Clays, K.; Coe, B. J. Chem. Mater. 2003, 15, 642. doi: 10.1021/cm0212111

    8. [8]

      (8) Gudbjartson, H.; Biradha, K.; Poirier, K. M.; Zaworotko, M. J.J. Am. Chem. Soc. 1999, 121, 2599. doi: 10.1021/ja982577a

    9. [9]

      (9) Xie, H. Q.; Liu, Z. H.; Huang, X. D.; Guo, J. S. Eur. Polym. J.2001, 37, 497. doi: 10.1016/S0014-3057(00)00146-4

    10. [10]

      (10) Yuan, M. S.; Fang, Q.; Liu, Z. Q.; Guo, J. I. P.; Chen, H. Y.; Yu,W. T.; Xue, G.; Liu, D. S. J. Org. Chem. 2006, 71, 7858. doi: 10.1021/jo061210i

    11. [11]

      (11) Allard, S.; Forster, M.; Souharce, B.; Thiem, H.; Scherf, U.Angew. Chem. Int. Edit. 2008, 47, 4070. doi: 10.1002/anie.200701920

    12. [12]

      (12) Steckler, T. T.; Zhang, X.; Hwang, J.; Honeyager, R.; Ohira, S.;Zhang, X. H.; Grant, A.; Ellinger, S.; Odom, S. A.; Sweat, D.;Tanner, D. B.; Rinzler, A. G.; Barlow, S.; Bredas, J. L.;Kippelen, B.; Marder, S. R.; Reynolds, J. R. J. Am. Chem. Soc.2009, 131, 2824. doi: 10.1021/ja809372u

    13. [13]

      (13) Perepichka, B. I. F.; Perepichka, D. F.; Meng, H.;Wudl, F. Adv. Mater. 2005, 17, 2281. doi: 10.1002/adma.200500461

    14. [14]

      (14) Veinot, J. G. C.; Marks, T. J. Accounts Chem. Res. 2005, 38,632. doi: 10.1021/ar030210r

    15. [15]

      (15) Scherf, U.; Gutacker, A.; Koenen, N. Accounts Chem. Res. 2008,41, 1086. doi: 10.1021/ar7002539

    16. [16]

      (16) Yesodha, S. K.; Sadashiva Pillai, C. K.; Tsutsumi, N. Prog. Polym. Sci. 2004, 29, 45. doi: 10.1016/j.progpolymsci.2003.07.002

    17. [17]

      (17) Haley, M. M.; Tykwinski, R. R. Function Organic Materials;Wiley-VCH:Weinheim, 2006.

    18. [18]

      (18) Mullen, K.; Scherf, U. Organic Light Emitting Devices: Synthesis Properties and Applications; Wiley-VCH:Weinheim,2006.

    19. [19]

      (19) Müller, T. J. J.; Bunz, U. H. F. Carbon-Rich Compounds;Wiley-VCH:Weinheim, 2007.

    20. [20]

      (20) Kim, J.; Kim, S. H.; Jung, I. H.; Jeong, E.; Xia, Y.; Cho, S.;Hwang, I.W.; Lee, K.; Suh, H.; Shim, H. K.;Woo, H. Y.J. Mater. Chem. 2010, 20, 1577. doi: 10.1039/b919033c

    21. [21]

      (21) Chase, D. T.; Fix, A. G.; Rose, B. D.;Weber, C. D.; Nobusue,S.; Stockwell, C. E.; Zakharov, L. N.; Lonergan, M. C.; Haley,M. M. Angew. Chem. Int. Edit. 2011, 50, 11103. doi: 10.1002/anie.v50.47

    22. [22]

      (22) Sun, X. X.; Liu, Y.; Zhao, H. B.; Sun, S. L.; Liu, C. G.; Qiu, Y.Q. Acta Phys. -Chim. Sin. 2011, 27, 315. [孙秀欣, 刘艳, 赵海波, 孙世玲, 刘春光, 仇永清. 物理化学学报, 2011, 27, 315.]doi: 10.3866/PKU.WHXB20110236

    23. [23]

      (23) Sun, S. L.; Qin, C. S.; Qiu, Y. Q.; Yang, G. C.; Su, Z. M.J. Organomet. Chem. 2009, 694, 1266. doi: 10.1016/j.jorganchem.2008.11.053

    24. [24]

      (24) Becke, A. D. J. Chem. Phys. 1993, 98, 5648. doi: 10.1063/1.464913

    25. [25]

      (25) Lee, C.; Yang,W.; Parr, R. G. Phys. Rev. B 1988, 37, 785. doi: 10.1103/PhysRevB.37.785

    26. [26]

      (26) Dehu, C.; Meyers, F.; Bredas, J. L. J. Am. Chem. Soc. 1993, 115,6198. doi: 10.1021/ja00067a039

    27. [27]

      (27) Sim, F.; Chin, S.; Dupuis, M.; Rice, J. E. J. Phys. Chem. 1993,97, 1158. doi: 10.1021/j100108a010

    28. [28]

      (28) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 09 W, Revision A.02; Gaussian Inc.:Wallingford, CT, 2009.

    29. [29]

      (29) McLean, A. D.; Yoshimine, M. J. Chem. Phys. 1967, 47, 1927.doi: 10.1063/1.1712220

    30. [30]

      (30) Mendes, P. J.; Silva, T. J. L.; Carvalho, A. J. P.; Ramalho, J. P. P.J. Mol. Struct.: Theochem 2010, 946, 33. doi: 10.1016/j.theochem.2010.01.029

    31. [31]

      (31) Tran, K.; Scott, G.W.; Funk, D. J.; Moore, D. S. J. Phys. Chem.1996, 100, 11863. doi: 10.1021/jp960447n


  • 加载中
    1. [1]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240302

    2. [2]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, doi: 10.12461/PKU.DXHX202404045

    3. [3]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, doi: 10.12461/PKU.DXHX202405166

    4. [4]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20230385

    5. [5]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240213

    6. [6]

      Zhiwen HUANGQi LIUJianping LANG . W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240184

    7. [7]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, doi: 10.12461/PKU.DXHX202404105

    8. [8]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202402006

    9. [9]

      Yi Li Zhaoxiang Cao Peng Liu Xia Wu Dongju Zhang . Revealing the Coloration and Color Change Mechanisms of the Eriochrome Black T Indicator through Computational Chemistry and UV-Visible Absorption Spectroscopy. University Chemistry, doi: 10.12461/PKU.DXHX202405154

    10. [10]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240007

    11. [11]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202311026

    12. [12]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, doi: 10.12461/PKU.DXHX202407022

    13. [13]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20230373

    14. [14]

      You ZhouLi-Sheng WangShuang-Gui LeiBo-Cheng TangZhi-Cheng YuXing LiYan-Dong WuKai-Lu ZhengAn-Xin Wu . I2-DMSO mediated tetra-functionalization of enaminones for the construction of novel furo[2′,3′:4,5]pyrimido[1,2-b]indazole skeletons via in situ capture of ketenimine cations. Chinese Chemical Letters, doi: 10.1016/j.cclet.2024.109799

    15. [15]

      Dongheng WANGSi LIShuangquan ZANG . Construction of chiral alkynyl silver chains and modulation of chiral optical properties. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240379

    16. [16]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, doi: 10.3866/PKU.DXHX202310005

    17. [17]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240047

    18. [18]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240065

    19. [19]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, doi: 10.3866/PKU.DXHX202310126

    20. [20]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202406007

Metrics
  • PDF Downloads(626)
  • Abstract views(1928)
  • HTML views(9)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return