Citation:
SHI Jing-Jie, CHEN Li-Ping, CHEN Wang-Hua, SHI Ning, YANG Hui, XU Wei. Prediction of the Thermal Conductivity of Organic Compounds Using Heuristic and Support Vector Machine Methods[J]. Acta Physico-Chimica Sinica
doi:
10.3866/PKU.WHXB201209273
-
To build the quantitative structure-property relationship (QSPR) between the molecular structures and the thermal conductivities of 147 organic compounds and investigate which structural factors influence the thermal conductivity of organic molecules, the topological, constitutional, geometrical, electrostatic, quantum-chemical, and thermodynamic descriptors of the compounds were calculated using the CODESSA software package, where these descriptors were pre-selected by the heuristic method (HM). The dataset of 147 organic compounds was randomly divided into a training set (118), and a test set (29). As a result, a five-descriptor linear model was constructed to describe the relationship between the molecular structures and the thermal conductivities. In addition, a non-linear regression model was built based on the support vector machine (SVM) with the same five descriptors. It was concluded that, although the fitting performance of the SVM model (squared correlation coefficient, R2=0.9240) was slightly worse than that of the HM model (R2=0.9267), the predictive performance of the SVM model (R2=0.9682) was better than that of the HM model (R2=0.9574). As the predictive parameter is more important than the fitting parameter, it can be seen that the SVM model is superior to the HM model. The proposed methods (SVM and HM) can be successfully used to predict the thermal conductivity of organic compounds with pre-selected theoretical descriptors, which can be directly calculated solely from the molecular structure.
-
Keywords:
-
Heuristic method
, - Support vector machine,
- Thermal conductivity,
- Prediction,
- QSPR
-
-
-
-
[1]
(1) Gao, S.; Cao, C. Z. Acta Phys. -Chim. Sin. 2006, 22, 1478.[高硕, 曹晨忠. 物理化学学报, 2006, 22, 1478.] doi: 10.3866/PKU.WHXB20061209
-
[2]
(2) Khajeh, A.; Modarress, H. Struct. Chem. 2011, 22, 1315. doi: 10.1007/s11224-011-9828-6
-
[3]
(3) Rides, M.; Morikawa, J.; Halldahl, L.; Hay, B.; Lobo, H.;Dawson, A.; Allen, C. Polymer Testing 2009, 28, 480. doi: 10.1016/j.polymertesting.2009.03.002
-
[4]
(4) Coquard, R.; Panel, B. Int. J. Therm. Sci. 2009, 48, 747. doi: 10.1016/j.ijthermalsci. 2008.06.005
-
[5]
(5) Huang, L. H.; Liu, L. S. J. Food Eng. 2009, 95, 179. doi: 10.1016/j.jfoodeng. 2009.04.024
-
[6]
(6) Nagasaka, Y.; Nagashima, A. Rev. Sci. Instrum. 1981, 52, 229.doi: 10.1063/1.1136577
-
[7]
(7) Sastri, S. R. S.; Rao, K. K. Chem. Eng. J. 1999, 74, 161.
-
[8]
(8) Toropov, A. A.; Toropova, A. P.; Benfenati, E. J. Math. Chem.2009, 46, 1060. doi: 10.1007/s10910-008-9491-3
-
[9]
(9) Shi, J. J.; Chen, L. P.; Shi, N.; Xu,W.; Yang, H.; Chen,W. H.China Safety Science Journal 2011, 21, 125. [时静洁, 陈利平,石宁, 徐伟, 杨惠, 陈网桦. 中国安全科学学报, 2011,21, 125.]
-
[10]
(10) Tamm, K.; Burk, P. J. Mol. Model. 2006, 12, 417. doi: 10.1007/s00894-005-0062-2
-
[11]
(11) Gharagheizi, F. Comput. Mater. Sci. 2007, 40, 159. doi: 10.1016/j.commatsci. 2006.11.010
-
[12]
(12) ng, Z. G.; Zhang, R. S.; Xia, B. B.; Hu, R. J.; Fan, B. T.QSAR Comb. Sci. 2008, 27, 1282. doi: 10.1002/qsar.200860027
-
[13]
(13) Lu, P.;Wei, X.; Zhang, R. S.; Yuan, Y. G.; ng, Z. G. Med. Chem. Res. 2011, 20, 1220. doi: 10.1007/s00044-010-9431-1
-
[14]
(14) Long,W.; Liu, P. X.; Li, X. R.; Xu, Y.; Yu, J.; Ma, S. T.; Yu, L.L.; Zou, Z. M. J. Chemometrics 2009, 23, 304. doi: 10.1002/cem.1235
-
[15]
(15) Bini, R.; Malvaldi, M.; Pitner,W. R.; Chiappe, C. J. Phys. Org. Chem. 2008, 21, 622. doi: 10.1002/poc.1337
-
[16]
(16) Pan, Y. Research on Prediction Model and Quantitative Relationship between the Structures and Flammability Characteristics of Organic Compounds. Ph.D. Dissertation,Nanjing University of Technology, Nanjing, 2009. [潘勇.有机物定量结构-燃爆特性相关性及预测模型研究[D]. 南京: 南京工业大学, 2009.]
-
[17]
(17) Katritzky, A. R.; Lobanov, V. S.; Karelson, M. CODESSA Version2.0 Reference Manual; University of Florida: Florida,1995-1997.
-
[18]
(18) Vapnik, V. N. The Nature of Statistical Learning Theory;Wiley:New York, 1998.
-
[19]
(19) Ojha, P. K.; Mitra, I.; Das, R. N.; Roy, K. Chemomet. Intell. Lab. Syst. 2011, 107, 194. doi: 10.1016/j.chemolab.2011.03.011
-
[20]
(20) Roy, K.; Mitra, I.; Kar, S. J. Chem. Inf. Model. 2012, 52, 396.doi: 10.1021/ci200520g
-
[21]
(21) Pinheiro, L. M. V.; Ventura, M. C. M. M.; Moita, M. L. C. J. J. Mol. Liq. 2010, 154, 102. doi: 10.1016/j.molliq.2010.04.013
-
[22]
(22) Strouf, O. Chemical Pattern Recognition; Wilely: New York1986.
-
[23]
(23) Lin, S. L.; Liu, Z. Journal of Zhejiang University of Technology2007, 35, 163. [林升梁, 刘志. 浙江工业大学学报, 2007,35,163.]
-
[24]
(24) Pan, Y.; Jiang, J. C.;Wang, R.; Cao, H. Y.; Cui, Y. J. Hazard. Mater. 2009, 164, 1242. doi: 10.1016/j.jhazmat.2008.09.031
-
[25]
(25) Yang, H.; Chen, L. P.; Xie, C. X.; Shi, N.; Chen,W. H. Fire Safety Science 2011, 20, 62. [杨惠, 陈利平, 谢传欣,石宁, 陈网桦. 火灾科学, 2011, 20, 62.]
-
[1]
-
-
-
[1]
Tianyun Chen , Ruilin Xiao , Xinsheng Gu , Yunyi Shao , Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, doi: 10.3866/PKU.DXHX202312017
-
[2]
Huanhuan XIE , Yingnan SONG , Lei LI . Two-dimensional single-layer BiOI nanosheets: Lattice thermal conductivity and phonon transport mechanism. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240281
-
[3]
Yujia Luo , Yunpeng Qi , Huiping Xing , Yuhu Li . The Use of Viscosity Method for Predicting the Life Expectancy of Xuan Paper-based Heritage Objects. University Chemistry, doi: 10.3866/PKU.DXHX202401037
-
[4]
Xinghai Li , Zhisen Wu , Lijing Zhang , Shengyang Tao . Machine Learning Enables the Prediction of Amide Bond Synthesis Based on Small Datasets. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202309041
-
[5]
Xiaoling LUO , Pintian ZOU , Xiaoyan WANG , Zheng LIU , Xiangfei KONG , Qun TANG , Sheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20230271
-
[6]
Yi DING , Peiyu LIAO , Jianhua JIA , Mingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240393
-
[7]
Ying Zhang , Fang Ge , Zhimin Luo . AI-Driven Biochemical Teaching Research: Predicting the Functional Effects of Gene Mutations. University Chemistry, doi: 10.12461/PKU.DXHX202412104
-
[8]
Tianqi Bai , Kun Huang , Fachen Liu , Ruochen Shi , Wencai Ren , Songfeng Pei , Peng Gao , Zhongfan Liu . 石墨烯厚膜热扩散系数与微观结构的关系. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202404024
-
[9]
Zitong Chen , Zipei Su , Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, doi: 10.3866/PKU.DXHX202311054
-
[10]
Hongwei Ma , Hui Li . Three Methods for Structure Determination from Powder Diffraction Data. University Chemistry, doi: 10.3866/PKU.DXHX202310035
-
[11]
Wenjie SHI , Fan LU , Mengwei CHEN , Jin WANG , Yingfeng HAN . Synthesis and host-guest properties of imidazolium-functionalized zirconium metal-organic cage. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240360
-
[12]
Chen LU , Qinlong HONG , Haixia ZHANG , Jian ZHANG . Syntheses, structures, and properties of copper-iodine cluster-based boron imidazolate framework materials. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240407
-
[13]
Haiping Wang . A Streamlined Method for Drawing Lewis Structures Using the Valence State of Outer Atoms. University Chemistry, doi: 10.12461/PKU.DXHX202401073
-
[14]
Peng ZHOU , Xiao CAI , Qingxiang MA , Xu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240047
-
[15]
Xiao SANG , Qi LIU , Jianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240158
-
[16]
Jingjing QING , Fan HE , Zhihui LIU , Shuaipeng HOU , Ya LIU , Yifan JIANG , Mengting TAN , Lifang HE , Fuxing ZHANG , Xiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240003
-
[17]
Xin MA , Ya SUN , Na SUN , Qian KANG , Jiajia ZHANG , Ruitao ZHU , Xiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20230357
-
[18]
Zhaoyang WANG , Chun YANG , Yaoyao Song , Na HAN , Xiaomeng LIU , Qinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240114
-
[19]
Yaofeng Yuan , Keyin Ye , Chunfa Xu , Hong Yan , Yuanming Li . Fostering an International Perspective in Postgraduate Student Teaching: A Case Study of the Organic Structure Analysis Course. University Chemistry, doi: 10.3866/PKU.DXHX202402024
-
[20]
Min Gu , Huiwen Xiong , Liling Liu , Jilie Kong , Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, doi: 10.3866/PKU.DXHX202310120
-
[1]
Metrics
- PDF Downloads(709)
- Abstract views(1667)
- HTML views(2)