Citation:
SUN Xiao-Fei, XU You-Long, LIU Yang-Hao, LI Lu. Optimizing the Hydrothermal Synthesis of Micro-Sized Olivine LiFePO4[J]. Acta Physico-Chimica Sinica
doi:
10.3866/PKU.WHXB201209271
-
The low tap density of LiFePO4 is hindering the energy and power density of lithium-ion batteries in portable electronics, electric vehicles, and stationary electricity storage applications. As part of our work to investigate the pathological mechanism of performance degradation in large particle LiFePO4, micro-sized pristine LiFePO4 without modifications, such as surface coating or bulk doping, was first prepared hydrothermally by optimizing the synthesis parameters in this work. The influences of precursor concentration, solution pH, hydrothermal temperature, and heating time on the phase structure, particle size, and morphology of the products were systematically investigated. It was found that the particle size of LiFePO4 increases with decreasing pH value, increasing precursor concentration, increasing hydrothermal temperature, and increasing heating time during hydrothermal synthesis. The performance degradation of large particle LiFePO4 was demonstrated by these intrinsic samples. The specific discharge capacity decreased from 152 to 80 mAh·g-1 at 0.1C rate when the particle size was increased from 0.7 to 16.5 μm. Moreover, less capacities were retained after 100 cycles at 1C rate for larger particle materials. Finally, the optimized LiFePO4 with a distorted diamond shape was prepared for later investigation of the plausible mechanism of performance degradation in large particle LiFePO4. Its electrochemical performance was preliminarily discussed, and will need to be improved in future to obtain practical high energy/power density LiFePO4 cathodes for lithium-ion batteries.
-
-
-
[1]
(1) Whittingham, M. S. Chem. Rev. 2004, 104, 4271. doi: 10.1021/cr020731c
-
[2]
(2) Yang, Z.; Liu, J.; Baskaran, S.; Imhoff, C.; Holladay, J. D.Journal of the Minerals, Metals and Materials Society 2010, 62,14.
-
[3]
(3) Ozawa, K. Solid State Ionics 1994, 69, 212. doi: 10.1016/0167-2738(94)90411-1
-
[4]
(4) Ellis, B. L.; Lee, K. T.; Nazar, L. F. Chem. Mater. 2010, 22, 691.doi: 10.1021/cm902696j
-
[5]
(5) Padhi, A. K.; Nanjundaswamy, K. S.; odenough, J. B.J. Electrochem. Soc. 1997, 144, 1188. doi: 10.1149/1.1837571
-
[6]
(6) Ju vic, D.; Uskokovic, D. J. Power Sources 2009, 190, 538.doi: 10.1016/j.jpowsour.2009.01.074
-
[7]
(7) Franger, S.; Le Cras, F.; Bourbon, C.; Rouault, H. J. Power Sources 2003, 119-121, 252.
-
[8]
(8) Cabana, J.; Shirakawa, J.; Chen, G. Y.; Richardson, T. J.; Grey,C. P. Chem. Mater. 2010, 22, 1249. doi: 10.1021/cm902714v
-
[9]
(9) Ong, S. P.;Wang, L.; Kang, B.; Ceder, G. Chem. Mater. 2008,20, 1798. doi: 10.1021/cm702327g
-
[10]
(10) Recham, N.; Casas-Cabanas, M.; Cabana, J.; Grey, C. P.; Jumas,J. C.; Dupont, L.; Armand, M.; Tarascon, J. M. Chem. Mater.2008, 20, 6798. doi: 10.1021/cm801817n
-
[11]
(11) Zhou, F.; Maxisch, T.; Ceder, G. Phys. Rev. Lett. 2006, 97, 4.
-
[12]
(12) Yamada, A.; Koizumi, H.; Nishimura, S. I.; Sonoyama, N.;Kanno, R.; Yonemura, M.; Nakamura, T.; Kobayashi, Y. Nat. Mater. 2006, 5, 357. doi: 10.1038/nmat1634
-
[13]
(13) Delacourt, C.; Poizot, P.; Tarascon, J. M.; Masquelier, C. Nat. Mater. 2005, 4, 254. doi: 10.1038/nmat1335
-
[14]
(14) Kang, B.; Ceder, G. Nature 2009, 458, 190. doi: 10.1038/nature07853
-
[15]
(15) Morgan, D.; Van der Ven, A.; Ceder, G. Electrochem. Solid- State Lett. 2004, 7, A30.
-
[16]
(16) Islam, M. S.; Driscoll, D. J.; Fisher, C. A. J.; Slater, P. R. Chem. Mater. 2005, 17, 5085. doi: 10.1021/cm050999v
-
[17]
(17) Nishimura, S. I.; Kobayashi, G.; Ohoyama, K.; Kanno, R.;Yashima, M.; Yamada, A. Nat. Mater. 2008, 7, 707. doi: 10.1038/nmat2251
-
[18]
(18) Kobayashi, G.; Nishimura, S. I.; Park, M. S.; Kanno, R.;Yashima, M.; Ida, T.; Yamada, A. Adv. Funct. Mater. 2009, 19,395. doi: 10.1002/adfm.v19:3
-
[19]
(19) Gibot, P.; Casas-Cabanas, M.; Laffont, L.; Levasseur, S.;Carlach, P.; Hamelet, S.; Tarascon, J. M.; Masquelier, C. Nat. Mater. 2008, 7, 741. doi: 10.1038/nmat2245
-
[20]
(20) Malik, R.; Burch, D.; Bazant, M.; Ceder, G. Nano Lett. 2010,10, 4123. doi: 10.1021/nl1023595
-
[21]
(21) Delacourt, C.; Poizot, P.; Levasseur, S.; Masquelier, C.Electrochem. Solid-State Lett. 2006, 9, A352.
-
[22]
(22) Herle, P. S.; Ellis, B.; Coombs, N.; Nazar, L. F. Nat. Mater.2004, 3, 147. doi: 10.1038/nmat1063
-
[23]
(23) Herstedt, M.; Stjerndahl, M.; Nytén, A.; Gustafsson, T.;Rensmo, H.; Siegbahn, H.; Ravet, N.; Armand, M.; Thomas, J.O.; Edström, K. Electrochem. Solid-State Lett. 2003, 6, A202.
-
[24]
(24) Chung, S. Y.; Bloking, J. T.; Chiang, Y. M. Nat. Mater. 2002, 1,123. doi: 10.1038/nmat732
-
[25]
(25) Oh, S.W.; Bang, H. J.; Myung, S. T.; Bae, Y. C.; Lee, S. M.;Sun, Y. K. J. Electrochem. Soc. 2008, 155, A414.
-
[26]
(26) Chen, J.; Vacchio, M. J.;Wang, S.; Chernova, N.; Zavalij, P. Y.;Whittingham, M. S. Solid State Ionics 2008, 178, 1676. doi: 10.1016/j.ssi.2007.10.015
-
[27]
(27) Yang, S.; Zavalij, P. Y.; Whittingham, M. S. Electrochem. Commun. 2001, 3, 505. doi: 10.1016/S1388-2481(01)00200-4
-
[28]
(28) Chen, G.; Song, X.; Richardson, T. J. J. Electrochem. Soc. 2007,154, A627.
-
[29]
(29) Zhao, H. C.; Song, Y.; Guo, X. D.; Zhong, B. H.; Dong, J.; Liu,H. Acta Phys. -Chim. Sin. 2011, 27, 2347. [赵浩川, 宋杨,郭孝东, 钟本和, 董静, 刘恒. 物理化学学报, 2011, 27,2347.] doi: 10.3866/PKU.WHXB20110905
-
[30]
(30) Fisher, C. A. J.; Islam, M. S. J. Mater. Chem. 2008, 18, 1209.doi: 10.1039/b715935h
-
[31]
(31) Chen, G.; Song, X.; Richardson, T. J. Electrochem. Solid-State Lett. 2006, 9, A295.
-
[32]
(32) Yu, D. Y.W.; Donoue, K.; Kadohata, T.; Murata, T.; Matsuta, S.;Fujitani, S. J. Electrochem. Soc. 2008, 155, A526.
-
[33]
(33) Wang, L.; Zhou, F.; Meng, Y. S.; Ceder, G. Phys. Rev. B 2007,76, 165435. doi: 10.1103/PhysRevB.76.165435
-
[34]
(34) Dokko, K.; Koizumi, S.; Kanamura, K. Chem. Lett. 2006, 35,338. doi: 10.1246/cl.2006.338
-
[35]
(35) Ellis, B.; Kan,W. H.; Makahnouk,W. R. M.; Nazar, L. F.J. Mater. Chem. 2007, 17, 3248. doi: 10.1039/b705443m
-
[36]
(36) Dokko, K.; Shiraishi, K.; Kanamura, K. J. Electrochem. Soc.2005, 152, A2199.
-
[37]
(37) Sun, X.; Xu, Y. Mater. Lett. 2012, 84, 139. doi: 10.1016/j.matlet.2012.06.053
-
[1]
-
-
-
[1]
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240115
-
[2]
Yuyao Wang , Zhitao Cao , Zeyu Du , Xinxin Cao , Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202406014
-
[3]
Xiangyu CAO , Jiaying ZHANG , Yun FENG , Linkun SHEN , Xiuling ZHANG , Juanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240270
-
[4]
Han ZHANG , Jianfeng SUN , Jinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240098
-
[5]
Pengyang FAN , Shan FAN , Qinjin DAI , Xiaoying ZHENG , Wei DONG , Mengxue WANG , Xiaoxiao HUANG , Yong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240339
-
[6]
Jianbao Mei , Bei Li , Shu Zhang , Dongdong Xiao , Pu Hu , Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202407023
-
[7]
Yuanchao LI , Weifeng HUANG , Pengchao LIANG , Zifang ZHAO , Baoyan XING , Dongliang YAN , Li YANG , Songlin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20230252
-
[8]
Siyu Zhang , Kunhong Gu , Bing'an Lu , Junwei Han , Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202309028
-
[9]
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202311030
-
[10]
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240149
-
[11]
Yifeng Xu , Jiquan Liu , Bin Cui , Yan Li , Gang Xie , Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, doi: 10.12461/PKU.DXHX202404009
-
[12]
Junke LIU , Kungui ZHENG , Wenjing SUN , Gaoyang BAI , Guodong BAI , Zuwei YIN , Yao ZHOU , Juntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240189
-
[13]
Aoyu Huang , Jun Xu , Yu Huang , Gui Chu , Mao Wang , Lili Wang , Yongqi Sun , Zhen Jiang , Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202408007
-
[14]
Jiaxuan Zuo , Kun Zhang , Jing Wang , Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202404042
-
[15]
Xinpeng LIU , Liuyang ZHAO , Hongyi LI , Yatu CHEN , Aimin WU , Aikui LI , Hao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20230488
-
[16]
Zhenming Xu , Mingbo Zheng , Zhenhui Liu , Duo Chen , Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, doi: 10.3866/PKU.DXHX202307022
-
[17]
Xueyu Lin , Ruiqi Wang , Wujie Dong , Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202311005
-
[18]
Doudou Qin , Junyang Ding , Chu Liang , Qian Liu , Ligang Feng , Yang Luo , Guangzhi Hu , Jun Luo , Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202310034
-
[19]
Yuting ZHANG , Zunyi LIU , Ning LI , Dongqiang ZHANG , Shiling ZHAO , Yu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240204
-
[20]
Qin ZHU , Jiao MA , Zhihui QIAN , Yuxu LUO , Yujiao GUO , Mingwu XIANG , Xiaofang LIU , Ping NING , Junming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240022
-
[1]
Metrics
- PDF Downloads(931)
- Abstract views(1934)
- HTML views(5)