Citation:
LIU Dong-Jia, WANG Chang-Sheng. Effect of Substituents on Hydrogen Bond Strength in Hydrogen-Bonded N-methylacetamide and Uracil Complexes[J]. Acta Physico-Chimica Sinica
doi:
10.3866/PKU.WHXB201209263
-
Theoretical calculations on a series of N-H…O=C hydrogen-bonded complexes containing 1-methyluracil and N-methylacetamide were carried out using B3LYP and MP2 methods. Substituent effects in the hydrogen bond acceptor molecule (1-methyluracil) on the hydrogen bond strength and hydrogen bond cooperativity were explored. The calculation results show that electron donating groups shorten the H…O distance and strengthen the N-H…O=C hydrogen bond, whereas electron withdrawing groups lengthen the H…O distance and weaken the N-H…O=C hydrogen bond. Natural bond orbital (NBO) analysis further indicates that electron donating groups result in a larger positive charge on the H atom and a larger negative charge on the O atom in the N-H…O=C bond, and result in increased charge transfer between the proton donor and acceptor molecules. Electron withdrawing groups show the opposite results. NBO analysis also indicates that electron donating groups result in larger second-order interaction energies between the oxygen lone pair and the N - H antibonding orbital when compared to the 1-methyluracil-containing complex (R=H), while electron withdrawing groups result in smaller second-order interaction energies.
-
-
-
[1]
(1) Desiraju, G. R.; Steiner, T. The Weak of Hydrogen Bond;Oxford University Press: New Nork, 1999; pp 343-412.
-
[2]
(2) Jeffrey, G. A. An Introduction to Hydrogen Bonding; OxfordUniversity Press: New York, 1997; pp 184-212.
-
[3]
(3) Scheiner, S. Hydrogen Bonding: A Theoretical Perspective;Oxford University Press: New York, 1997; pp 105-117.
-
[4]
(4) Chalaris, M.; Samios, J. J. Phys. Chem. B 1999, 103, 1161.doi: 10.1021/jp982559f
-
[5]
(5) Mohajeri, A.; Nobandegani, F. F. J. Phys. Chem. A 2008, 112,281. doi: 10.1021/jp075992a
-
[6]
(6) Sun, C. L.;Wang, C. S. Sci. China Ser. B-Chem. 2009, 39 (6),481. [孙长亮, 王长生. 中国科学B 辑: 化学, 2009, 39 (6),481.]
-
[7]
(7) Jiang, X. N.;Wang, C. S. ChemPhysChem 2009, 10, 3330.doi: 10.1002/cphc.200900591
-
[8]
(8) Li, Y.; Jiang, X. N.;Wang, C. S. J. Comput. Chem. 2011, 32,953. doi: 10.1002/jcc.v32.5
-
[9]
(9) Kolew, S. K.; Petkow, P. S.; Rangelow, M. A.; Vayssilow, G. N.J. Phys. Chem. A 2011, 115, 14054. doi: 10.1021/jp204313f
-
[10]
(10) Angelina, E. L.; Peruchena, N. M. J. Phys. Chem. A 2011, 115,4701. doi: 10.1021/jp1105168
-
[11]
(11) Ji, C. G.; Zhang, Z. H. J. Phys. Chem. B 2011, 115, 12230. doi: 10.1021/jp205907h
-
[12]
(12) Iz rodina, E. I.; MacFarlane, D. R. J. Phys. Chem. B 2011,115, 14659. doi: 10.1021/jp208150b
-
[13]
(13) Dong, H.; Hua,W. J.; Li, S. H. J. Phys. Chem. A 2007, 111,2941.
-
[14]
(14) Vargas, R.; Garza, J.; Friesner, R. A.; Stern, H.; Hay, B. P.;Dixon, D. A. J. Phys. Chem. A 2001, 105, 4963. doi: 10.1021/jp003888m
-
[15]
(15) Kawahara, S.; Kobori, A.; Sekine, M.; Taira, K.; Uchimaru, T.J. Phys. Chem. A 2001, 105, 10596. doi: 10.1021/jp0124645
-
[16]
(16) Kawahara, S.; Uchimaru, T.; Taira, K.; Sekine, M. J. Phys. Chem. A 2001, 105, 3894.
-
[17]
(17) Sun, C. L.; Zhang, Y.; Jiang, X. N.;Wang, C. S.; Yang, Z. Z. Sci. China Ser. B-Chem. 2008, 38 (9), 762. [孙长亮, 张艳, 姜笑楠, 王长生, 杨忠志. 中国科学B 辑: 化学, 2008, 38 (9), 762.]
-
[18]
(18) Sun, C. L.; Jiang, X. N.;Wang, C. S. J. Comput. Chem. 2009,30, 2567. doi: 10.1002/jcc.v30:15
-
[19]
(19) Wang, C. S.; Zhang, Y.; Gao, K.; Yang, Z. Z. J. Chem. Phys.2005, 123, 024307. doi: 10.1063/1.1979471
-
[20]
(20) Zhang, Y.;Wang, C. S. J. Comput. Chem. 2009, 30, 1251. doi: 10.1002/jcc.v30:8
-
[21]
(21) Sun, C. L.;Wang, C. S. J. Mol. Struct. -Theochem 2010, 956, 38.doi: 10.1016/j.theochem.2010.06.020
-
[22]
(22) Jiang, X. N.; Sun, C. L.;Wang, C. S. J. Comput. Chem. 2010,31, 1410.
-
[23]
(23) Chen, Y. F.; Dannenberg, J. J. J. Am. Chem. Soc. 2006, 128,8100. doi: 10.1021/ja060494l
-
[24]
(24) Nobko, N.; Dannenberg, J. J. J. Phys. Chem. A 2003, 107, 6688.doi: 10.1021/jp0345497
-
[25]
(25) Nobko, N.; Dannenberg, J. J. J. Phys. Chem. A 2003, 107,10389.
-
[26]
(26) Zhao, Y. L.;Wu, Y. D. J. Am. Chem. Soc. 2002, 124, 1570. doi: 10.1021/ja016230a
-
[27]
(27) Wu, Y. D.; Zhao, Y. L. J. Am. Chem. Soc. 2001, 123, 5313. doi: 10.1021/ja003482n
-
[28]
(28) Tan, H.W.; Qu,W.W.; Chen, G. J.; Liu, R. Z. J. Phys. Chem. A2005, 109, 6303. doi: 10.1021/jp051444q
-
[29]
(29) Hunter, K. C.; Millen, A. L.;Wetmore, S. D. J. Phys. Chem. B2007, 111, 1858. doi: 10.1021/jp066902p
-
[30]
(30) Jeong, E.; Kim, H.; Lee, S.W.; Han, K. Mol. Cells 2003, 16,161.
-
[31]
(31) Cheng, A. C.; Frankel, A. D. J. Am. Chem. Soc. 2004, 126, 434.doi: 10.1021/ja037264g
-
[32]
(32) Tkachenko, M. Y.; Boryskina, O. P.; Shestopalova, A. V.;Tolstorukov, M. Y. Int. J. Quantum Chem. 2010, 110, 230. doi: 10.1002/qua.v110:1
-
[33]
(33) Frish, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gassian 03,Revision D.01; Gaussian Inc.: Pittsburgh, PA, 2003.
-
[1]
-
-
-
[1]
Qiaowen CHANG , Ke ZHANG , Guangying HUANG , Nuonan LI , Weiping LIU , Fuquan BAI , Caixian YAN , Yangyang FENG , Chuan ZUO . Syntheses, structures, and photo-physical properties of iridium phosphorescent complexes with phenylpyridine derivatives bearing different substituting groups. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240311
-
[2]
Wentao Lin , Wenfeng Wang , Yaofeng Yuan , Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, doi: 10.3866/PKU.DXHX202310095
-
[3]
Jiaxun Wu , Mingde Li , Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, doi: 10.12461/PKU.DXHX202405098
-
[4]
Yaqin Zheng , Lian Zhuo , Meng Li , Chunying Rong . Enhancing Understanding of the Electronic Effect of Substituents on Benzene Rings Using Quantum Chemistry Calculations. University Chemistry, doi: 10.12461/PKU.DXHX202406119
-
[5]
Daojuan Cheng , Fang Fang . Exploration and Implementation of Science-Education Integration in Organic Chemistry Teaching for Pharmacy Majors: A Case Study on Nucleophilic Substitution Reactions of Alkyl Halides. University Chemistry, doi: 10.12461/PKU.DXHX202403105
-
[6]
Yi DING , Peiyu LIAO , Jianhua JIA , Mingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240393
-
[7]
Danqing Wu , Jiajun Liu , Tianyu Li , Dazhen Xu , Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, doi: 10.12461/PKU.DXHX202403087
-
[8]
Liyang ZHANG , Dongdong YANG , Ning LI , Yuanyu YANG , Qi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240079
-
[9]
Guanghui SUI , Yanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240221
-
[10]
Zhangshu Wang , Xin Zhang , Jixin Han , Xuebing Fang , Xiufeng Zhao , Zeyu Gu , Jinjun Deng . Exploration and Design of Experimental Teaching on Ultrasonic-Enhanced Synergistic Treatment of Ternary Composite Flooding Produced Water. University Chemistry, doi: 10.3866/PKU.DXHX202310056
-
[11]
Xiao SANG , Qi LIU , Jianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240158
-
[12]
Qiang Zhou , Pingping Zhu , Wei Shao , Wanqun Hu , Xuan Lei , Haiyang Yang . Innovative Experimental Teaching Design for 3D Printing High-Strength Hydrogel Experiments. University Chemistry, doi: 10.3866/PKU.DXHX202310064
-
[13]
Qiangqiang SUN , Pengcheng ZHAO , Ruoyu WU , Baoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20230454
-
[14]
Zhaoyang WANG , Chun YANG , Yaoyao Song , Na HAN , Xiaomeng LIU , Qinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240114
-
[15]
Yanan Liu , Yufei He , Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, doi: 10.3866/PKU.DXHX202401081
-
[16]
Zhicheng JU , Wenxuan FU , Baoyan WANG , Ao LUO , Jiangmin JIANG , Yueli SHI , Yongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240363
-
[17]
Ling Zhang , Jing Kang . Turn Waste into Valuable: Preparation of High-Strength Water-Based Adhesives from Polymethylmethacrylate Wastes: a Comprehensive Chemical Experiments. University Chemistry, doi: 10.3866/PKU.DXHX202306075
-
[18]
Chuanming GUO , Kaiyang ZHANG , Yun WU , Rui YAO , Qiang ZHAO , Jinping LI , Guang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20230459
-
[19]
. . Chinese Journal of Inorganic Chemistry,
-
[20]
Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, doi: 10.3866/PKU.DXHX202402018
-
[1]
Metrics
- PDF Downloads(725)
- Abstract views(1885)
- HTML views(22)