Citation: LIU Dong-Jia, WANG Chang-Sheng. Effect of Substituents on Hydrogen Bond Strength in Hydrogen-Bonded N-methylacetamide and Uracil Complexes[J]. Acta Physico-Chimica Sinica doi: 10.3866/PKU.WHXB201209263 shu

Effect of Substituents on Hydrogen Bond Strength in Hydrogen-Bonded N-methylacetamide and Uracil Complexes

  • Received Date: 27 July 2012
    Available Online: 26 September 2012

    Fund Project: 国家自然科学基金(20973088, 21173109,21133005) (20973088, 21173109,21133005)教育部高等学校博士点基金(20102136110001)资助项目 (20102136110001)

  • Theoretical calculations on a series of N-H…O=C hydrogen-bonded complexes containing 1-methyluracil and N-methylacetamide were carried out using B3LYP and MP2 methods. Substituent effects in the hydrogen bond acceptor molecule (1-methyluracil) on the hydrogen bond strength and hydrogen bond cooperativity were explored. The calculation results show that electron donating groups shorten the H…O distance and strengthen the N-H…O=C hydrogen bond, whereas electron withdrawing groups lengthen the H…O distance and weaken the N-H…O=C hydrogen bond. Natural bond orbital (NBO) analysis further indicates that electron donating groups result in a larger positive charge on the H atom and a larger negative charge on the O atom in the N-H…O=C bond, and result in increased charge transfer between the proton donor and acceptor molecules. Electron withdrawing groups show the opposite results. NBO analysis also indicates that electron donating groups result in larger second-order interaction energies between the oxygen lone pair and the N - H antibonding orbital when compared to the 1-methyluracil-containing complex (R=H), while electron withdrawing groups result in smaller second-order interaction energies.

  • 加载中
    1. [1]

      (1) Desiraju, G. R.; Steiner, T. The Weak of Hydrogen Bond;Oxford University Press: New Nork, 1999; pp 343-412.

    2. [2]

      (2) Jeffrey, G. A. An Introduction to Hydrogen Bonding; OxfordUniversity Press: New York, 1997; pp 184-212.

    3. [3]

      (3) Scheiner, S. Hydrogen Bonding: A Theoretical Perspective;Oxford University Press: New York, 1997; pp 105-117.

    4. [4]

      (4) Chalaris, M.; Samios, J. J. Phys. Chem. B 1999, 103, 1161.doi: 10.1021/jp982559f

    5. [5]

      (5) Mohajeri, A.; Nobandegani, F. F. J. Phys. Chem. A 2008, 112,281. doi: 10.1021/jp075992a

    6. [6]

      (6) Sun, C. L.;Wang, C. S. Sci. China Ser. B-Chem. 2009, 39 (6),481. [孙长亮, 王长生. 中国科学B 辑: 化学, 2009, 39 (6),481.]

    7. [7]

      (7) Jiang, X. N.;Wang, C. S. ChemPhysChem 2009, 10, 3330.doi: 10.1002/cphc.200900591

    8. [8]

      (8) Li, Y.; Jiang, X. N.;Wang, C. S. J. Comput. Chem. 2011, 32,953. doi: 10.1002/jcc.v32.5

    9. [9]

      (9) Kolew, S. K.; Petkow, P. S.; Rangelow, M. A.; Vayssilow, G. N.J. Phys. Chem. A 2011, 115, 14054. doi: 10.1021/jp204313f

    10. [10]

      (10) Angelina, E. L.; Peruchena, N. M. J. Phys. Chem. A 2011, 115,4701. doi: 10.1021/jp1105168

    11. [11]

      (11) Ji, C. G.; Zhang, Z. H. J. Phys. Chem. B 2011, 115, 12230. doi: 10.1021/jp205907h

    12. [12]

      (12) Iz rodina, E. I.; MacFarlane, D. R. J. Phys. Chem. B 2011,115, 14659. doi: 10.1021/jp208150b

    13. [13]

      (13) Dong, H.; Hua,W. J.; Li, S. H. J. Phys. Chem. A 2007, 111,2941.

    14. [14]

      (14) Vargas, R.; Garza, J.; Friesner, R. A.; Stern, H.; Hay, B. P.;Dixon, D. A. J. Phys. Chem. A 2001, 105, 4963. doi: 10.1021/jp003888m

    15. [15]

      (15) Kawahara, S.; Kobori, A.; Sekine, M.; Taira, K.; Uchimaru, T.J. Phys. Chem. A 2001, 105, 10596. doi: 10.1021/jp0124645

    16. [16]

      (16) Kawahara, S.; Uchimaru, T.; Taira, K.; Sekine, M. J. Phys. Chem. A 2001, 105, 3894.

    17. [17]

      (17) Sun, C. L.; Zhang, Y.; Jiang, X. N.;Wang, C. S.; Yang, Z. Z. Sci. China Ser. B-Chem. 2008, 38 (9), 762. [孙长亮, 张艳, 姜笑楠, 王长生, 杨忠志. 中国科学B 辑: 化学, 2008, 38 (9), 762.]

    18. [18]

      (18) Sun, C. L.; Jiang, X. N.;Wang, C. S. J. Comput. Chem. 2009,30, 2567. doi: 10.1002/jcc.v30:15

    19. [19]

      (19) Wang, C. S.; Zhang, Y.; Gao, K.; Yang, Z. Z. J. Chem. Phys.2005, 123, 024307. doi: 10.1063/1.1979471

    20. [20]

      (20) Zhang, Y.;Wang, C. S. J. Comput. Chem. 2009, 30, 1251. doi: 10.1002/jcc.v30:8

    21. [21]

      (21) Sun, C. L.;Wang, C. S. J. Mol. Struct. -Theochem 2010, 956, 38.doi: 10.1016/j.theochem.2010.06.020

    22. [22]

      (22) Jiang, X. N.; Sun, C. L.;Wang, C. S. J. Comput. Chem. 2010,31, 1410.

    23. [23]

      (23) Chen, Y. F.; Dannenberg, J. J. J. Am. Chem. Soc. 2006, 128,8100. doi: 10.1021/ja060494l

    24. [24]

      (24) Nobko, N.; Dannenberg, J. J. J. Phys. Chem. A 2003, 107, 6688.doi: 10.1021/jp0345497

    25. [25]

      (25) Nobko, N.; Dannenberg, J. J. J. Phys. Chem. A 2003, 107,10389.

    26. [26]

      (26) Zhao, Y. L.;Wu, Y. D. J. Am. Chem. Soc. 2002, 124, 1570. doi: 10.1021/ja016230a

    27. [27]

      (27) Wu, Y. D.; Zhao, Y. L. J. Am. Chem. Soc. 2001, 123, 5313. doi: 10.1021/ja003482n

    28. [28]

      (28) Tan, H.W.; Qu,W.W.; Chen, G. J.; Liu, R. Z. J. Phys. Chem. A2005, 109, 6303. doi: 10.1021/jp051444q

    29. [29]

      (29) Hunter, K. C.; Millen, A. L.;Wetmore, S. D. J. Phys. Chem. B2007, 111, 1858. doi: 10.1021/jp066902p

    30. [30]

      (30) Jeong, E.; Kim, H.; Lee, S.W.; Han, K. Mol. Cells 2003, 16,161.

    31. [31]

      (31) Cheng, A. C.; Frankel, A. D. J. Am. Chem. Soc. 2004, 126, 434.doi: 10.1021/ja037264g

    32. [32]

      (32) Tkachenko, M. Y.; Boryskina, O. P.; Shestopalova, A. V.;Tolstorukov, M. Y. Int. J. Quantum Chem. 2010, 110, 230. doi: 10.1002/qua.v110:1

    33. [33]

      (33) Frish, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gassian 03,Revision D.01; Gaussian Inc.: Pittsburgh, PA, 2003.


  • 加载中
    1. [1]

      Qiaowen CHANGKe ZHANGGuangying HUANGNuonan LIWeiping LIUFuquan BAICaixian YANYangyang FENGChuan ZUO . Syntheses, structures, and photo-physical properties of iridium phosphorescent complexes with phenylpyridine derivatives bearing different substituting groups. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240311

    2. [2]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, doi: 10.3866/PKU.DXHX202310095

    3. [3]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, doi: 10.12461/PKU.DXHX202405098

    4. [4]

      Yaqin Zheng Lian Zhuo Meng Li Chunying Rong . Enhancing Understanding of the Electronic Effect of Substituents on Benzene Rings Using Quantum Chemistry Calculations. University Chemistry, doi: 10.12461/PKU.DXHX202406119

    5. [5]

      Daojuan Cheng Fang Fang . Exploration and Implementation of Science-Education Integration in Organic Chemistry Teaching for Pharmacy Majors: A Case Study on Nucleophilic Substitution Reactions of Alkyl Halides. University Chemistry, doi: 10.12461/PKU.DXHX202403105

    6. [6]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240393

    7. [7]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, doi: 10.12461/PKU.DXHX202403087

    8. [8]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240079

    9. [9]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240221

    10. [10]

      Zhangshu Wang Xin Zhang Jixin Han Xuebing Fang Xiufeng Zhao Zeyu Gu Jinjun Deng . Exploration and Design of Experimental Teaching on Ultrasonic-Enhanced Synergistic Treatment of Ternary Composite Flooding Produced Water. University Chemistry, doi: 10.3866/PKU.DXHX202310056

    11. [11]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240158

    12. [12]

      Qiang Zhou Pingping Zhu Wei Shao Wanqun Hu Xuan Lei Haiyang Yang . Innovative Experimental Teaching Design for 3D Printing High-Strength Hydrogel Experiments. University Chemistry, doi: 10.3866/PKU.DXHX202310064

    13. [13]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20230454

    14. [14]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240114

    15. [15]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, doi: 10.3866/PKU.DXHX202401081

    16. [16]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240363

    17. [17]

      Ling Zhang Jing Kang . Turn Waste into Valuable: Preparation of High-Strength Water-Based Adhesives from Polymethylmethacrylate Wastes: a Comprehensive Chemical Experiments. University Chemistry, doi: 10.3866/PKU.DXHX202306075

    18. [18]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20230459

    19. [19]

      . . Chinese Journal of Inorganic Chemistry,

    20. [20]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, doi: 10.3866/PKU.DXHX202402018

Metrics
  • PDF Downloads(725)
  • Abstract views(1885)
  • HTML views(22)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return