Citation:
DUAN Bao-Gen, LI Yan, LI Jie, CHENG Tie-Jun, WANG Ren-Xiao. An Empirical Additive Model for Aqueous Solubility Computation: Success and Limitations[J]. Acta Physico-Chimica Sinica,
;2012, 28(10): 2249-2257.
doi:
10.3866/PKU.WHXB201209171
-
We have developed a new empirical model, namely XLOGS, for computing aqueous solubility (logS) of organic compounds. This model is essentially an additive model, which employs a total of 83 atom/ group types and three correction factors as descriptors. Furthermore, it computes the logS value of a query compound by using the known logS value of an appropriate reference molecule as a starting point. XLOGS was calibrated on a training set of 4171 compounds with known logS values. The squared correlation coefficient (R2) and standard deviation (SD) in regression were 0.82 and 0.96 log units, respectively. The entire training set was further split into one subset containing liquid compounds only and another subset containing solid compounds only. Regression results of XLOGS were obviously better on the former subset (SD=0.65 vs 0.94 log units). The difference between log1/S and logP (partition coefficient, the ratio of concentrations of a compound in a mixture of water and n-octanol at equilibrium) was used as an indicator to investigate the performance of XLOGS on liquid compounds and solid compounds. Our results suggested that an additive model like XLOGS performed most satisfactorily when this difference was close to zero. Three other logS models, including Qikprop, MOE-logS, and ALOGPS, were also compared with XLOGS on an independent test set of 132 drug-like compounds. Put together, our study provides some general guidance for applying additive models to computation of aqueous solubility.
-
Keywords:
-
Aqueous solubility
, - Additive model,
- XLOGS
-
-
-
-
[1]
(1) Lipinski, C. A.; Lombardo, F.; Dominy, B.W.; Feeney, P. J. Adv. Drug Deliv. Rev. 2001, 46, 3. doi: 10.1016/S0169-409X(00)00129-0
-
[2]
(2) Di, L.; Kerns, E. H. Drug Discovery Today 2006, 11, 446. doi: 10.1016/j.drudis.2006.03.004
-
[3]
(3) Delaney, J. S. Drug Discovery Today 2005, 10, 289. doi: 10.1016/S1359-6446(04)03365-3
-
[4]
(4) Kariv, I.; Rourick, R. A.; Kassel, D. B.; Chung, T. D. Comb. Chem. High Throughput Screen 2002, 5, 459.
-
[5]
(5) Hansch, C.; Quinlan, J. E.; Lawrence, G. L. J. Org. Chem. 1968,33, 347. doi: 10.1021/jo01265a071
-
[6]
(6) Ran, Y. Q.; He, Y.; Yang, G.; Johnson, J. L. H.; Yalkowsky, S. H.Chemosphere 2002, 48, 487. doi: 10.1016/S0045-6535(02)00118-2
-
[7]
(7) Abraham, M. H.; Le, J. J. Pharm. Sci. 1999, 88, 868. doi: 10.1002/(ISSN)1520-6017
-
[8]
(8) Jorgensen,W. L.; Duffy, E. M. Bioorg. Med. Chem. Lett. 2000,10, 1155. doi: 10.1016/S0960-894X(00)00172-4
-
[9]
(9) Livingstone, D. J.; Ford, M. G.; Huuskonen, J. J.; Salt, D.W.J. Comput.-Aid. Mol. Des. 2001, 15, 741. doi: 10.1023/A:1012284411691
-
[10]
(10) McFarland, J.W.; Avdeef, A.; Berger, C. M.; Raevsky, O. A.J. Chem. Inf. Comput. Sci. 2001, 41, 1355. doi: 10.1021/ci0102822
-
[11]
(11) Tetko, I. V.; Tanchuk, V. Y.; Kasheva, T. N.; Villa, A. E. P.J. Chem. Inf. Comput. Sci. 2001, 41, 1488. doi: 10.1021/ci000392t
-
[12]
(12) Yaffe, D.; Cohen, Y.; Espinosa, G.; Arenas, A.; Giralt, F.J. Chem. Inf. Comput. Sci. 2001, 41, 1177. doi: 10.1021/ci010323u
-
[13]
(13) Klopman, G.; Zhu, H. J. Chem. Inf. Comp. Sci. 2001, 41, 439.doi: 10.1021/ci000152d
-
[14]
(14) Hou, T. J.; Xia, K.; Zhang,W.; Xu, X. J. J. Chem. Inf. Comput. Sci. 2004, 44, 266. doi: 10.1021/ci034184n
-
[15]
(15) Wang, J. M.; Hou, T. J.; Xu, X. J. J. Chem. Inf. Model. 2009, 49,571. doi: 10.1021/ci800406y
-
[16]
(16) Wang, J. M.; Krudy, G.; Hou, T. J.; Zhang,W.; Holland, G.; Xu,X. J. J. Chem. Inf. Model. 2007, 47, 1395. doi: 10.1021/ci700096r
-
[17]
(17) Thompson, J. D.; Cramer, C. J.; Truhlar, D. G. J. Chem. Phys.2003, 119, 1661. doi: 10.1063/1.1579474
-
[18]
(18) Lüder, K.; Lindfors, L.;Westergren, J.; Nordholm, S.; Kjellander,R. J. Phys. Chem. B 2007, 111, 7303.
-
[19]
(19) Lüder, K.; Lindfors, L.;Westergren, J.; Nordholm, S.; Kjellander,R. J. Phys. Chem. B 2007, 111, 1883. doi: 10.1021/jp0642239
-
[20]
(20) Westergren, J.; Lindfors, L.; Höglund, T.; Lüder, K.; Nordholm,S.; Kjellander, R. J. Phys. Chem. B 2007, 111, 1872. doi: 10.1021/jp064220w
-
[21]
(21) Lüder, K.; Lindfors, L.;Westergren, J.; Nordholm, S.; Persson,R.; Pedersen, M. J. Comput. Chem. 2009, 30, 1859. doi: 10.1002/jcc.v30:12
-
[22]
(22) Palmer, D. S.; Llinas, A.; Morao, I.; Day, G. M.; odman, J.M.; Glen, R. C.; Mitchell, J. B. O. Mol. Pharm. 2008, 5, 266.doi: 10.1021/mp7000878
-
[23]
(23) Chebil, L.; Chipot, C.; Archambault, F.; Humeau, C.; Engasser,J. M.; Ghoul, M.; Dehez, F. J. Phys. Chem. B 2010, 114, 12308.doi: 10.1021/jp104569k
-
[24]
(24) Johnson, M. A.; Maggiora, G. M. Concepts and Applications of Molecular Similarity;Wiley: New York, 1990.
-
[25]
(25) Cheng, T. J.; Zhao, Y.; Li, X.; Lin, F.; Xu, Y.; Zhang, X. L.; Li,Y.;Wang, R. X.; Lai, L. H. J. Chem. Inf. Model. 2007, 47, 2140.doi: 10.1021/ci700257y
-
[26]
(26) Zhu, H.; Sedykh, A.; Chakravarti, S. K.; Klopman, G. Curr. Comput.-Aid. Drug Des. 2005, 1, 3. doi: 10.2174/1573409052952323
-
[27]
(27) Sedykh, A. Y.; Klopman, G. J. Chem. Inf. Model. 2006, 46,1598. doi: 10.1021/ci0505269
-
[28]
(28) Llinas, A.; Glen, R. C.; odman, J. M. J. Chem. Inf. Model.2008, 48, 1289. doi: 10.1021/ci800058v
-
[29]
(29) Hopfinger, A. J.; Esposito, E. X.; Llinas, A.; Glen, R. C.; odman, J. M. J. Chem. Inf. Model. 2009, 49, 1. doi: 10.1021/ci800436c
-
[30]
(30) Bolton, E. E.;Wang, Y.; Thiessen, P. A.; Bryant, S. H. Annu. Rep. Comput. Chem. 2008, 4, 217. doi: 10.1016/S1574-1400(08)00012-1
-
[31]
(31) Nilakantan, R.; Bauman, N.; Dixon, J. S.; Venkataraghavan, R.J. Chem. Inf. Comput. Sci. 1987, 27, 82. doi: 10.1021/ci00054a008
-
[32]
(32) Faller, B.; Ertl, P. Adv. Drug Deliv. Rev. 2007, 59, 533. doi: 10.1016/j.addr.2007.05.005
-
[33]
(33) Yalkowsky, S. H.; Valvani, S. C. J. Pharm. Sci. 1980, 69, 912.doi: 10.1002/(ISSN)1520-6017
-
[34]
(34) Yalkowsky, S. H.; Valvani, S. C.; Roseman, T. J. J. Pharm. Sci.1983, 72, 866. doi: 10.1002/(ISSN)1520-6017
-
[35]
(35) Lobell, M.; Sivarajah, V. Mol. Divers. 2003, 7, 69. doi: 10.1023/B:MODI.0000006562.93049.36
-
[36]
(36) Meylan,W. M.; Howard, P. H. Perspect. Drug Discov. 2000, 19,67. doi: 10.1023/A:1008715521862
-
[37]
(37) Balakin, K. V.; Savchuk, N. P.; Tetko, I. V. Curr. Med. Chem.2006, 13, 223. doi: 10.2174/092986706775197917
-
[38]
(38) Jain, N.; Yalkowsky, S. H. J. Pharm. Sci. 2001, 90, 234. doi: 10.1002/(ISSN)1520-6017
-
[1]
-
-
-
[1]
Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029
-
[2]
Shi-Yu Lu , Wenzhao Dou , Jun Zhang , Ling Wang , Chunjie Wu , Huan Yi , Rong Wang , Meng Jin . Amorphous-Crystalline Interfaces Coupling of CrS/CoS2 Few-Layer Heterojunction with Optimized Crystallinity Boosted for Water-Splitting and Methanol-Assisted Energy-Saving Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(8): 2308024-0. doi: 10.3866/PKU.WHXB202308024
-
[3]
Yuena Yang , Xufang Hu , Yushan Liu , Yaya Kuang , Jian Ling , Qiue Cao , Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125
-
[4]
Yonghui Wang , Weilin Chen , Yangguang Li . Knowledge Construction of “Solubility of Inorganic Substances” in Elemental Chemistry Teaching. University Chemistry, 2024, 39(4): 261-267. doi: 10.3866/PKU.DXHX202312102
-
[5]
Junqiao Zhuo , Xinchen Huang , Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100
-
[6]
Ruilin Han , Xiaoqi Yan . Comparison of Multiple Function Methods for Fitting Surface Tension and Concentration Curves. University Chemistry, 2024, 39(7): 381-385. doi: 10.3866/PKU.DXHX202311023
-
[7]
Zixuan Jiang , Yihan Wen , Kejie Chai , Weiming Xu . Exploring Chemistry Bridging Education from Data-Driven to Symbol Establishment within the Framework of AI Models. University Chemistry, 2025, 40(9): 132-141. doi: 10.12461/PKU.DXHX202502004
-
[8]
Yalu Ma , Yun Tian , Xiaofei Ma . DeepSeek Large Model: Implications for Inorganic Chemistry Teaching and Learning. University Chemistry, 2025, 40(9): 171-177. doi: 10.12461/PKU.DXHX202502109
-
[9]
Xiaolong Zhang , Mingshan Jin , Shaoli Liu , Bingfei Yan , Yun Li . Constructing High-Precision Potential Energy Surfaces Based on Physical Models: A Comprehensive Computational Chemistry Experiment. University Chemistry, 2025, 40(10): 257-262. doi: 10.12461/PKU.DXHX202411049
-
[10]
Wenwen Ma , Liyan Liu , Chengyang Yin , Hongdan Zhang , Lian Kong , Na Wei , Zhan Yu , Zhen Zhao . Exploration of the Online and Offline Mixed Teaching Mode of Specialized English for Chemistry Majors Based on the BOPPPS Model. University Chemistry, 2025, 40(9): 287-294. doi: 10.12461/PKU.DXHX202410026
-
[11]
Xiaohui Li , Ze Zhang , Jingyi Cui , Juanjuan Yin . Advanced Exploration and Practice of Teaching in the Experimental Course of Chemical Engineering Thermodynamics under the “High Order, Innovative, and Challenging” Framework. University Chemistry, 2024, 39(7): 368-376. doi: 10.3866/PKU.DXHX202311027
-
[12]
Wenwen Zhang , Peichao Zhang , Conghao Gai , Xiaoyun Chai , Yan Zou , Qingjie Zhao . Unveiling Kinetics at Natural Abundance: 13C NMR Isotope Effect Experiments. University Chemistry, 2025, 40(10): 203-207. doi: 10.12461/PKU.DXHX202411076
-
[13]
Ling Li , Guocheng Wang . 知识图谱与AI助教在无机化学混合式教学中的初步探索——以“沉淀溶解平衡”的教学为例. University Chemistry, 2025, 40(6): 1-8. doi: 10.12461/PKU.DXHX202407063
-
[14]
Xuanzhu Huo , Yixi Liu , Qiyu Wu , Zhiqiang Dong , Chanzi Ruan , Yanping Ren . Integrated Experiment of “Electrolytic Preparation of Cu2O and Gasometric Determination of Avogadro’s Constant: Implementation, Results, and Discussion: A Micro-Experiment Recommended for Freshmen in Higher Education at Various Levels Across the Nation. University Chemistry, 2024, 39(3): 302-307. doi: 10.3866/PKU.DXHX202308095
-
[15]
Rui Li , Jiayu Zhang , Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051
-
[16]
Wenliang Wang , Weina Wang , Sufan Wang , Tian Sheng , Tao Zhou , Nan Wei . “Schrödinger Equation – Approximate Models – Core Concepts – Simple Applications”: Constructing a Logical Framework and Knowledge Graph of Atom and Molecule Structures. University Chemistry, 2024, 39(8): 338-343. doi: 10.3866/PKU.DXHX202312084
-
[17]
Da Wang , Xiaobin Yin , Jianfang Wu , Yaqiao Luo , Siqi Shi . All-Solid-State Lithium Cathode/Electrolyte Interfacial Resistance: From Space-Charge Layer Model to Characterization and Simulation. Acta Physico-Chimica Sinica, 2024, 40(7): 2307029-0. doi: 10.3866/PKU.WHXB202307029
-
[18]
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
-
[19]
Tengjiao Wang , Tian Cheng , Rongjun Liu , Zeyi Wang , Yuxuan Qiao , An Wang , Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094
-
[20]
Qiang Zhou , Pingping Zhu , Wei Shao , Wanqun Hu , Xuan Lei , Haiyang Yang . Innovative Experimental Teaching Design for 3D Printing High-Strength Hydrogel Experiments. University Chemistry, 2024, 39(6): 264-270. doi: 10.3866/PKU.DXHX202310064
-
[1]
Metrics
- PDF Downloads(726)
- Abstract views(1649)
- HTML views(4)