Citation: CHEN Wen-Long, LIU Hai-Chao. Relationship between the Structures of Metal Oxide Catalysts and Their Properties in Selective Oxidation of Methanol[J]. Acta Physico-Chimica Sinica, ;2012, 28(10): 2315-2326. doi: 10.3866/PKU.WHXB201209146 shu

Relationship between the Structures of Metal Oxide Catalysts and Their Properties in Selective Oxidation of Methanol

  • Received Date: 4 September 2012
    Available Online: 14 September 2012

    Fund Project: 国家自然科学基金(20825310, 20973011) (20825310, 20973011)国家重点基础研究发展规划项目(973) (2011CB201400, 2011CB808700)资助 (973) (2011CB201400, 2011CB808700)

  • Methanol is an important platform molecule for the production of energy and chemicals. For its efficient utilization, it is of critical significance to clarify the relationship between the structures of the catalysts and their performance as well as the corresponding reaction mechanisms. In this review, we summarized some recent progress in the understanding of the active structures of several metal oxide-based catalysts and the reaction mechanism, and the consequent tuning of their redox and acid sites for the selective oxidation of methanol. The catalysts included supported molybdenum oxides, supported vanadium oxides, and heteropolyacids with Keggin structures as well as rhenium oxides and ruthenium oxides recently explored for the methanol oxidation. Such progress provides insights into the design of novel catalysts more efficient for the oxidative conversion of methanol towards the targeted products.

  • 加载中
    1. [1]

      (1) Olah, G. A.; Molnár, Á. Hydrocarbon Chemistry, 2nd ed.; JohnWiley & Sons: Hoboken, New Jersey, 2003; pp 114-117.

    2. [2]

      (2) Xu, X. D.; Moulijn, J. A. Energy & Fuels 1996, 10, 305. doi: 10.1021/ef9501511

    3. [3]

      (3) Hamelinck, C. N.; Faaij, A. P. C. J. Power Sources 2002, 111, 1.doi: 10.1016/S0378-7753(02)00220-3

    4. [4]

      (4) Olah, G. A.; eppert, A.; Prakash, G. K. S. Beyond Oil and Gas: The Methanol Economy;Wiley-VCH:Weinheim, 2009; pp168-173.

    5. [5]

      (5) Deo, G.;Wachs, I. E. J. Catal. 1994, 146, 323. doi: 10.1006/jcat.1994.1071

    6. [6]

      (6) Hu, H. C.;Wachs, I. E. J. Phys. Chem. 1995, 99, 10911. doi: 10.1021/j100027a035

    7. [7]

      (7) Yuan, Y. Z.; Iwasawa, Y. J. Phys. Chem. B 2002, 106, 4441. doi: 10.1021/jp013770l

    8. [8]

      (8) Liu, H. C.; Iglesia, E. J. Phys. Chem. B 2005, 109, 2155. doi: 10.1021/jp0401980

    9. [9]

      (9) Liu, H. C.; Iglesia, E. J. Phys. Chem. B 2003, 107, 10840. doi: 10.1021/jp0301554

    10. [10]

      (10) Tatibouet, J. M. Appl. Catal. A-Gen. 1997, 148, 213. doi: 10.1016/S0926-860X(96)00236-0

    11. [11]

      (11) Badlani, M.;Wachs, I. E. Catal. Lett. 2001, 75, 137. doi: 10.1023/A:1016715520904

    12. [12]

      (12) Wachs, I. E. Catal. Today 2005, 100, 79. doi: 10.1016/j.cattod.2004.12.019

    13. [13]

      (13) Oyama, S. T.; Radhakrishnan, R.; Seman, M.; Kondo, J. N.;Domen, K.; Asakura, K. J. Phys. Chem. B 2003, 107, 1845. doi: 10.1021/jp0220276

    14. [14]

      (14) Vitry, D.; Morikawa, Y.; Dubois, J. L.; Ueda,W. Appl. Catal. A-Gen. 2003, 251, 411. doi: 10.1016/S0926-860X(03)00381-8

    15. [15]

      (15) Cavani, F.; Trifiro, F. Catal. Today 1995, 24, 307. doi: 10.1016/0920-5861(95)00051-G

    16. [16]

      (16) Chen, K. D.; Xie, S. B.; Bell, A. T.; Iglesia, E. J. Catal. 2001,198, 232. doi: 10.1006/jcat.2000.3125

    17. [17]

      (17) Tsilomelekis, G.; Boghosian, S. J. Phys. Chem. C 2011, 115,2146. doi: 10.1021/jp1098987

    18. [18]

      (18) Chempath, S.; Zhang, Y. H.; Bell, A. T. J. Phys. Chem. C 2007,111, 1291. doi: 10.1021/jp064741j

    19. [19]

      (19) Lee, E. L.;Wachs, I. E. J. Phys. Chem. C 2007, 111, 14410. doi: 10.1021/jp0735482

    20. [20]

      (20) Tsilomelekis, G.; Boghosian, S. Phys. Chem. Chem. Phys. 2012,14, 2216.

    21. [21]

      (21) Handzlik, J.; Sautet, P. J. Phys. Chem. C 2008, 112, 14456. doi: 10.1021/jp802372e

    22. [22]

      (22) Liu, H. C.; Cheung, P.; Iglesia, E. J. Catal. 2003, 217, 222.

    23. [23]

      (23) Christodoulakis, A.; Heracleous, E.; Lemonidou, A. A.;Boghosian, S. J. Catal. 2006, 242, 16. doi: 10.1016/j.jcat.2006.05.024

    24. [24]

      (24) Li,W. Z.; Huang, H.; Li, H. J.; Zhang,W.; Liu, H. C. Langmuir2008, 24, 8358. doi: 10.1021/la800370r

    25. [25]

      (25) Hamraoui, K.; Cristol, S.; Payen, E.; Paul, J. F. J. Mol. Struct. - Theochem 2009, 903, 73. doi: 10.1016/j.theochem.2008.09.044

    26. [26]

      (26) Chen, K. D.; Bell, A. T.; Iglesia, E. J. Catal. 2002, 209, 35. doi: 10.1006/jcat.2002.3620

    27. [27]

      (27) Liu, H. C.; Cheung, P.; Iglesia, E. J. Phys. Chem. B 2003, 107,4118. doi: 10.1021/jp0221744

    28. [28]

      (28) Brandhorst, M.; Cristol, S.; Capron, M.; Dujardin, C.; Vezin, H.;Le bourdon, G.; Payen, E. Catal. Today 2006, 113, 34. doi: 10.1016/j.cattod.2005.11.008

    29. [29]

      (29) Aritani, H.; Fukuda, O.; Miyaji, A.; Hasegawa, S. Appl. Surf. Sci. 2001, 180, 261. doi: 10.1016/S0169-4332(01)00366-X

    30. [30]

      (30) Tsilomelekis, G.; Christodoulakis, A.; Boghosian, S. Catal. Today 2007, 127, 139. doi: 10.1016/j.cattod.2007.03.026

    31. [31]

      (31) Zhang, S. H.; Zhang, H. P.; Li,W. Z.; Zhang,W.; Huang, H.;Liu, H. C. Acta Phys. -Chim. Sin. 2010, 26, 1879. [张胜红,张鸿鹏, 李为臻, 张伟, 黄华, 刘海超. 物理化学学报,2010, 26, 1879.] doi: 10.3866/PKU.WHXB20100732

    32. [32]

      (32) Shannon, I. J.; Maschmeyer, T.; Oldroyd, R. D.; Sankar, G.;Thomas, J. M.; Pernot, H.; Balikdjian, J. P.; Che, M. J. Chem. Soc. Faraday Trans. 1998, 94, 1495. doi: 10.1039/a800054i

    33. [33]

      (33) Grabowski, R.; Grzybowska, B.; Haber, J.; Sloczynski, J. React. Kinet. Catal. Lett. 1975, 2, 81. doi: 10.1007/BF02060956

    34. [34]

      (34) Wachs, I. E.; Saleh, R. Y.; Chan, S. S.; Chersich, C. C. Appl. Catal. 1985, 15, 339. doi: 10.1016/S0166-9834(00)81848-5

    35. [35]

      (35) Blasco, T.; Lopez-Nieto, J. M. Appl. Catal. A-Gen. 1997, 157,117. doi: 10.1016/S0926-860X(97)00029-X

    36. [36]

      (36) Cavalli, P.; Cavani, F.; Manenti, I.; Trifiro, F. Catal. Today 1987,1, 245. doi: 10.1016/0920-5861(87)80043-3

    37. [37]

      (37) Kumar, C. P.; Reddy, K. R.; Rao, V. V.; Chary, K. V. R. Green Chem. 2002, 4, 513. doi: 10.1039/b206581a

    38. [38]

      (38) Olthof, B.; Khodakov, A.; Bell, A. T.; Iglesia, E. J. Phys. Chem. B 2000, 104, 1516. doi: 10.1021/jp9921248

    39. [39]

      (39) Bronkema, J. L.; Leo, D. C.; Bell, A. T. J. Phys. Chem. C 2007,111, 14530. doi: 10.1021/jp073826x

    40. [40]

      (40) Bronkema, J. L.; Bell, A. T. J. Phys. Chem. C 2008, 112, 6404.doi: 10.1021/jp7110692

    41. [41]

      (41) Tanaka, T.; Yamashita, H.; Tsuchitani, R.; Funabiki, T.; Yoshida,S. J. Chem. Soc. Faraday Trans. 1988, 84, 2987. doi: 10.1039/f19888402987

    42. [42]

      (42) Eckert, H.;Wachs, I. E. J. Phys. Chem. 1989, 93, 6796. doi: 10.1021/j100355a043

    43. [43]

      (43) Weckhuysen, B. M.; Jehng, J. M.;Wachs, I. E. J. Phys. Chem. B2000, 104, 7382. doi: 10.1021/jp000055n

    44. [44]

      (44) Busca, G. J. Mol. Catal. 1989, 50, 241.

    45. [45]

      (45) Gao, X. T.; Bare, S. R.;Weckhuysen, B. M.;Wachs, I. E.J. Phys. Chem. B 1998, 102, 10842. doi: 10.1021/jp9826367

    46. [46]

      (46) Shapovalov, V.; Metiu, H. J. Phys. Chem. C 2007, 111, 14179.doi: 10.1021/jp074481l

    47. [47]

      (47) Vining,W. C.; Strunk, J.; Bell, A. T. J. Catal. 2012, 285, 160.doi: 10.1016/j.jcat.2011.09.024

    48. [48]

      (48) Ganduglia-Pirovano, M. V.; Popa, C.; Sauer, J.; Abbott, H.; Uhl,A.; Baron, M.; Stacchiola, D.; Bondarchuk, O.; Shaikhutdinov,S.; Freund, H. J. J. Am. Chem. Soc. 2010, 132, 2345. doi: 10.1021/ja910574h

    49. [49]

      (49) Burcham, L. J.;Wachs, I. E. Catal. Today 1999, 49, 467. doi: 10.1016/S0920-5861(98)00442-8

    50. [50]

      (50) Burcham, L. J.; Badlani, M.;Wachs, I. E. J. Catal. 2001, 203,104. doi: 10.1006/jcat.2001.3312

    51. [51]

      (51) Bronkema, J. L.; Bell, A. T. J. Phys. Chem. C 2007, 111, 420.doi: 10.1021/jp0653149

    52. [52]

      (52) odrow, A.; Bell, A. T. J. Phys. Chem. C 2007, 111, 14753.doi: 10.1021/jp072627a

    53. [53]

      (53) Vining,W. C.; Strunk, J.; Bell, A. T. J. Catal. 2011, 281, 222.doi: 10.1016/j.jcat.2011.05.001

    54. [54]

      (54) Weber, R. S. J. Phys. Chem. 1994, 98, 2999. doi: 10.1021/j100062a042

    55. [55]

      (55) Kim, H. Y.; Lee, H. M.; Pala, R. G. S.; Metiu, H. J. Phys. Chem. C 2009, 113, 16083. doi: 10.1021/jp903298w

    56. [56]

      (56) Abbott, H. L.; Uhl, A.; Baron, M.; Lei, Y.; Meyer, R. J.;Stacchiola, D. J.; Bondarchuk, O.; Shaikhutdinov, S.; Freund,H. J. J. Catal. 2010, 272, 82. doi: 10.1016/j.jcat.2010.03.009

    57. [57]

      (57) Gao, X. T.;Wachs, I. E. Top. Catal. 2002, 18, 243. doi: 10.1023/A:1013842722877

    58. [58]

      (58) odrow, A.; Bell, A. T. J. Phys. Chem. C 2008, 112, 13204.doi: 10.1021/jp801339q

    59. [59]

      (59) Holstein,W. L.; Machiels, C. J. J. Catal. 1996, 162, 118. doi: 10.1006/jcat.1996.0265

    60. [60]

      (60) Jackson, S. D.; Hargreaves, J. S. J. Metal Oxide Catalysis;Wiley-VCH:Weinheim, 2009; pp 487-498.

    61. [61]

      (61) Khaliullin, R. Z.; Bell, A. T. J. Phys. Chem. B 2002, 106, 7832.doi: 10.1021/jp014695h

    62. [62]

      (62) Dobler, J.; Pritzsche, M.; Sauer, J. J. Am. Chem. Soc. 2005, 127,10861. doi: 10.1021/ja051720e

    63. [63]

      (63) Gao, X. T.; Bare, S. R.; Fierro, J. L. G.;Wachs, I. E. J. Phys. Chem. B 1999, 103, 618. doi: 10.1021/jp983357m

    64. [64]

      (64) Gao, X. T.; Fierro, J. L. G.;Wachs, I. E. Langmuir 1999, 15,3169. doi: 10.1021/la981254p

    65. [65]

      (65) Gao, X. T.;Wachs, I. E. J. Catal. 2000, 192, 18. doi: 10.1006/jcat.2000.2822

    66. [66]

      (66) Fubini, B.; Bolis, V.; Cavena , A.; Garrone, E.; Uglien , P.Langmuir 1993, 9, 2712. doi: 10.1021/la00034a034

    67. [67]

      (67) Feng, T.; Vohs, J. M. J. Catal. 2004, 221, 619. doi: 10.1016/j.jcat.2003.10.002

    68. [68]

      (68) Zhanpeisov, N. U.; Fukumura, H. J. Phys. Chem. C 2007, 111,16941. doi: 10.1021/jp074869g

    69. [69]

      (69) Eder, D.; Kramer, R. Phys. Chem. Chem. Phys. 2003, 5, 1314.

    70. [70]

      (70) Strunk, J.; Vining,W. C.; Bell, A. T. J. Phys. Chem. C 2010,114, 16937. doi: 10.1021/jp100104d

    71. [71]

      (71) Kim, H. Y.; Lee, H. M.; Metiu, H. J. Phys. Chem. C 2010, 114,13736. doi: 10.1021/jp103361v

    72. [72]

      (72) Vining,W. C.; odrow, A.; Strunk, J.; Bell, A. T. J. Catal.2010, 270, 163. doi: 10.1016/j.jcat.2009.12.017

    73. [73]

      (73) Ross-Medgaarden, E. I.;Wachs, I. E.; Knowles,W. V.; Burrows,A.; Kiely, C. J.;Wong, M. S. J. Am. Chem. Soc. 2009, 131, 680.doi: 10.1021/ja711456c

    74. [74]

      (74) Masamoto, J.; Iwaisako, T.; Chohno, M.; Kawamura, M.;Ohtake, J.; Matsuzaki, K. J. Appl. Polym. Sci. 1993, 50, 1299.doi: 10.1002/app.1993.070500801

    75. [75]

      (75) Zhang, Q. D.; Tan, Y. S.; Yang, C. H.; Han, Y. Z. J. Mol. Catal. A-Chem. 2007, 263, 149. doi: 10.1016/j.molcata.2006.08.044

    76. [76]

      (76) Lambiotte, G. New Process for Continuous Production ofMethylal. CH Patent 688041, 1997.

    77. [77]

      (77) Satoh, S.; Tanigawa, Y. Process for Producing Methylal. USPatent 6 379 507, 2002.

    78. [78]

      (78) Yuan, Y. Z.; Liu, H. C.; Imoto, H.; Shido, T.; Iwasawa, Y.J. Catal. 2000, 195, 51. doi: 10.1006/jcat.2000.2990

    79. [79]

      (79) Yuan, Y. Z.; Shido, T.; Iwasawa, Y. Chem. Commun. 2000, No.15, 1421.

    80. [80]

      (80) Zhang, Y. H.; Drake, I. J.; Briggs, D. N.; Bell, A. T. J. Catal.2006, 244, 219. doi: 10.1016/j.jcat.2006.09.002

    81. [81]

      (81) Royer, S.; Secordel, X.; Brandhorst, M.; Dumeignil, F.; Cristol,S.; Dujardin, C.; Capron, M.; Payena, E.; Dubois, J. L. Chem. Commun. 2008, No. 7, 865.

    82. [82]

      (82) rnay, J.; Secordel, X.; Tesquet, G.; de Menorval, B.; Cristol,S.; Fongarland, P.; Capron, M.; Duhamel, L.; Payen, E.;Dubois, J. L.; Dumeignil, F. Green Chem. 2010, 12, 1722. doi: 10.1039/c0gc00194e

    83. [83]

      (83) Fu, Y. C.; Shen, J. Y. Chem. Commun. 2007, No. 21, 2172.

    84. [84]

      (84) Zhao, H. Y.; Bennici, S.; Shen, J. Y.; Auroux, A. J. Catal. 2010,272, 176. doi: 10.1016/j.jcat.2010.02.028

    85. [85]

      (85) Zhao, H. Y.; Bennici, S.; Cai, J. X.; Shen, J. Y.; Auroux, A.J. Catal. 2010, 274, 259. doi: 10.1016/j.jcat.2010.07.011

    86. [86]

      (86) Dunn, J. P.; Jehng, J. M.; Kim, D. S.; Briand, L. E.; Stenger, H.G.;Wachs, I. E. J. Phys. Chem. B 1998, 102, 6212. doi: 10.1021/jp9814247

    87. [87]

      (87) Guo, H. Q.; Li, D. B.; Jiang, D.; Li,W. H.; Sun, Y. H. Catal. Commun. 2010, 11, 396. doi: 10.1016/j.catcom.2009.11.009

    88. [88]

      (88) Lu, X. L.; Qin, Z. F.; Dong, M.; Zhu, H. Q.;Wang, G. F.;Zhao, Y. B.; Fan,W. B.;Wang, J. G. Fuel 2011, 90, 1335. doi: 10.1016/j.fuel.2011.01.007

    89. [89]

      (89) Chen, S.;Wang, S. P.; Ma, X. B.; ng, J. L. Chem. Commun.2011, No. 47, 9345.

    90. [90]

      (90) Sun, Q.; Liu, J.W.; Cai, J. X.; Fu, Y. C.; Shen, J. Y. Catal. Commun. 2009, 11, 47. doi: 10.1016/j.catcom.2009.08.010

    91. [91]

      (91) Zhao, H. Y.; Bennici, S.; Shen, J. Y.; Auroux, A. Appl. Catal. A-Gen. 2010, 385, 224. doi: 10.1016/j.apcata.2010.07.017

    92. [92]

      (92) Zhao, H. Y.; Bennici, S.; Shen, J. Y.; Auroux, A. J. Therm. Anal. Calorim. 2010, 99, 843. doi: 10.1007/s10973-009-0499-0

    93. [93]

      (93) Misono, M. Chem. Commun. 2001, No. 13, 1141.

    94. [94]

      (94) Okuhara, T.; Mizuno, N.; Misono, M. Appl. Catal. A-Gen.2001, 222, 63. doi: 10.1016/S0926-860X(01)00830-4

    95. [95]

      (95) Damyanova, S.; Cubeiro, M. L.; Fierro, J. L. G. J. Mol. Catal. A-Chem. 1999, 142, 85. doi: 10.1016/S1381-1169(98)00279-9

    96. [96]

      (96) Liu, H. C.; Bayat, N.; Iglesia, E. Angew. Chem. Int. Edit. 2003,42, 5072. doi: 10.1002/(ISSN)1521-3773

    97. [97]

      (97) Liu, H. C.; Iglesia, E. J. Catal. 2004, 223, 161.

    98. [98]

      (98) Guo, H. Q.; Li, D. B.; Xiao, H. C.; Zhang, J. L.; Li,W. H.;Sun, Y. H. Kor. J. Chem. Eng. 2009, 26, 902. doi: 10.1007/s11814-009-0151-5

    99. [99]

      (99) Nakka, L.; Molinari, J. E.;Wachs, I. E. J. Am. Chem. Soc.2009, 131, 15544. doi: 10.1021/ja904957d

    100. [100]

      (100) Molinari, J. E.; Nakka, L.; Kim, T.;Wachs, I. E. ACS Catal.2011, 1, 1536. doi: 10.1021/cs2001362

    101. [101]

      (101) Mol, J. C. Catal. Today 1999, 51, 289. doi: 10.1016/S0920-5861(99)00051-6

    102. [102]

      (102) Liu, H. C.; Gaigneaux, E. M.; Imoto, H.; Shido, T.; Iwasawa,Y. Appl. Catal. A-Gen. 2000, 202, 251. doi: 10.1016/S0926-860X(00)00539-1

    103. [103]

      (103) Wachs, I. E.; Deo, G.; Andreini, A.; Vuurman, M. A.; deBoer,M. J. Catal. 1996, 160, 322. doi: 10.1006/jcat.1996.0152

    104. [104]

      (104) Yuan, Y. Z.; Tsai, K. R.; Liu, H. C.; Iwasawa, Y. Top. Catal.2003, 22, 9. doi: 10.1023/A:1021451309465

    105. [105]

      (105) Lee, E. L.;Wachs, I. E. J. Phys. Chem. C 2008, 112, 6487. doi: 10.1021/jp076485w

    106. [106]

      (106) Lacheen, H. S.; Cordeiro, P. J.; Iglesia, E. J. Am. Chem. Soc.2006, 128, 15082. doi: 10.1021/ja065832x

    107. [107]

      (107) Lacheen, H. S.; Cordeiro, P. J.; Iglesia, E. Chem.-Eur. J. 2007,13, 3048. doi: 10.1002/(ISSN)1521-3765

    108. [108]

      (108) Nikonova, O. A.; Capron, M.; Fang, G.; Faye, J.; Mamede, A.S.; Jalowiecki-Duhamel, L.; Dumeignil, F.; Seisenbaeva, G. A.J. Catal. 2011, 279, 310. doi: 10.1016/j.jcat.2011.01.028

    109. [109]

      (109) Tougerti, A.; Cristol, S.; Berrier, E.; Briois, V.; La Fontaine, C.;Villain, F.; Joly, Y. Phys. Rev. B 2012, 85 (12), 125136. doi: 10.1103/PhysRevB.85.125136

    110. [110]

      (110) Yang, T. J.; Lunsford, J. H. J. Catal. 1987, 103, 55. doi: 10.1016/0021-9517(87)90092-3

    111. [111]

      (111) Chan, A. S. Y.; Chen,W. H.;Wang, H.; Rowe, J. E.; Madey, T.E. J. Phys. Chem. B 2004, 108, 14643. doi: 10.1021/jp040168x

    112. [112]

      (112) Liu, J. L.; Zhan, E. S.; Cai,W. J.; Li, J.; Shen,W. J. Catal. Lett.2008, 120, 274. doi: 10.1007/s10562-007-9280-9

    113. [113]

      (113) Hardcastle, F. D.;Wachs, I. E.; Horsley, J. A.; Via, G. H.J. Mol. Catal. 1988, 46, 15. doi: 10.1016/0304-5102(88)85081-8

    114. [114]

      (114) Albonetti, S.; Cavani, F.; Trifiro, F. Catal. Rev.-Sci. Eng. 1996,38, 413. doi: 10.1080/01614949608006463

    115. [115]

      (115) Secordel, X.; Yoboue, A.; Cristol, S.; Lancelot, C.; Capron, M.;Paul, J. F.; Berrier, E. J. Solid State Chem. 2011, 184, 2806.doi: 10.1016/j.jssc.2011.08.002

    116. [116]

      (116) Zang, L.; Kisch, H. Angew. Chem. Int. Edit. 2000, 39, 3921.doi: 10.1002/(ISSN)1521-3773

    117. [117]

      (117) Zhan, B. Z.; White, M. A.; Sham, T. K.; Pincock, J. A.; Doucet,R. J.; Rao, K. V. R.; Robertson, K. N.; Cameron, T. S. J. Am. Chem. Soc. 2003, 125, 2195. doi: 10.1021/ja0282691

    118. [118]

      (118) Zhan, B. Z.; White, M. A.; Pincock, J. A.; Robertson, K. N.;Cameron, T. S.; Sham, T. K. Can. J. Chem. -Rev. Can. Chim.2003, 81, 764. doi: 10.1139/v03-060

    119. [119]

      (119) Li,W. Z.; Liu, H. C.; Iglesia, E. J. Phys. Chem. B 2006, 110,23337. doi: 10.1021/jp0648689

    120. [120]

      (120) Lee, J. S.; Kim, J. C.; Kim, Y. G. Appl. Catal. 1990, 57, 1. doi: 10.1016/S0166-9834(00)80720-4

    121. [121]

      (121) Jenner, G. Appl. Catal. A-Gen. 1995, 121, 25.

    122. [122]

      (122) Huang, H.; Li,W. Z.; Liu, H. C. Catal. Today 2012, 183, 58.doi: 10.1016/j.cattod.2011.05.021

    123. [123]

      (123) Lichtenberger, J.; Lee, D.; Iglesia, E. Phys. Chem. Chem. Phys.2007, 9, 4902.

    124. [124]

      (124) Wittstock, A.; Zielasek, V.; Biener, J.; Friend, C. M.; Baumer,M. Science 2010, 327, 319. doi: 10.1126/science.1183591

    125. [125]

      (125) Zhan, B. Z.; Iglesia, E. Angew. Chem. Int. Edit. 2007, 46, 3697.doi: 10.1002/(ISSN)1521-3773

    126. [126]

      (126) Yu, H.; Zeng, K.; Fu, X. B.; Zhang, Y.; Peng, F.;Wang, H. J.;Yang, J. J. Phys. Chem. C 2008, 112, 11875. doi: 10.1021/jp804003g


  • 加载中
    1. [1]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    2. [2]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    3. [3]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    4. [4]

      Zongpei Zhang Yanyang Li Yanan Si Kai Li Shuangquan Zang . Developing a Chemistry Experiment Center Employing a Multifaceted Approach to Serve High-Quality Laboratory Education. University Chemistry, 2024, 39(7): 13-19. doi: 10.12461/PKU.DXHX202404041

    5. [5]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    6. [6]

      Quanliang Chen Zhaohui Zhou . Research on the Active Site of Nitrogenase over Fifty Years. University Chemistry, 2024, 39(7): 287-293. doi: 10.3866/PKU.DXHX202310133

    7. [7]

      Jiantao Zai Hongjin Chen Xiao Wei Li Zhang Li Ma Xuefeng Qian . The Learning-Centered Problem-Oriented Experimental Teaching. University Chemistry, 2024, 39(4): 40-47. doi: 10.3866/PKU.DXHX202309023

    8. [8]

      Xiaohang Qiu Yang Liu Fei Ding Jie Han Yijun Li . Construction of a Demonstration Center for Experimental Chemistry Education in the New Era. University Chemistry, 2024, 39(7): 26-31. doi: 10.12461/PKU.DXHX202404112

    9. [9]

      Junlin Yan Changhao Wang Quanguo Zhai Chenghui Liu Dong Xue . A New Construction Model and Practice of Demonstration Center for Experimental Chemistry Education. University Chemistry, 2024, 39(7): 64-68. doi: 10.12461/PKU.DXHX202405005

    10. [10]

      Haorui Gu Ning Li Zhanxiang Liu Xufeng Lin . Construction and Development of Chemistry Experimental Teaching Center under the Background of the “101 Plan”. University Chemistry, 2024, 39(7): 110-115. doi: 10.12461/PKU.DXHX202405022

    11. [11]

      Nuo Zhang Xiaojun Sun Hongmin Ma Yan Li Xiang Ren Dan Wu Chuannan Luo Qin Wei . Construction and Practice of National Experimental Teaching Demonstration Center of Applied Chemistry. University Chemistry, 2024, 39(7): 116-120. doi: 10.12461/PKU.DXHX202405031

    12. [12]

      Yan Zhao Weiping Luo Haoran Liu Yongqing Kuang Zhaoyang Wu Weijun Yang Yongjun Li Dongcai Guo . Construction and Practice of the Chemistry and Chemical Engineering Experimental Teaching Center of Hunan University. University Chemistry, 2024, 39(7): 147-152. doi: 10.12461/PKU.DXHX202405059

    13. [13]

      Yang Liu Ying Yu Yilei Wang Chao Chen . Building of a High-Quality, Multi-Level Teaching Team in Chemistry Experimental Teaching Center. University Chemistry, 2024, 39(7): 166-171. doi: 10.12461/PKU.DXHX202405069

    14. [14]

      Yecang Tang Shan Ling Zhen Fang . Exploration of a Hierarchical and Integration-Oriented Talent Training Model in the Demonstration Center for Experimental Chemistry Education. University Chemistry, 2024, 39(7): 188-192. doi: 10.12461/PKU.DXHX202405107

    15. [15]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    16. [16]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    17. [17]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    18. [18]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    19. [19]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    20. [20]

      Rong Lai Jie Li Xianfang Xu Shui Hu Tao Chen Houjin Li Guping Hu Hongyan Chen Fang Zhu . Taking the Overall Relocation as an Opportunity to Accelerate the Development of Chemical Experimental Teaching Centers: A Case Study of the National Demonstration Center for Experimental Chemistry Education at Sun Yat-Sen University. University Chemistry, 2024, 39(4): 33-39. doi: 10.3866/PKU.DXHX202310115

Metrics
  • PDF Downloads(917)
  • Abstract views(2072)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return