Citation:
CHEN Wen-Long, LIU Hai-Chao. Relationship between the Structures of Metal Oxide Catalysts and Their Properties in Selective Oxidation of Methanol[J]. Acta Physico-Chimica Sinica,
;2012, 28(10): 2315-2326.
doi:
10.3866/PKU.WHXB201209146
-
Methanol is an important platform molecule for the production of energy and chemicals. For its efficient utilization, it is of critical significance to clarify the relationship between the structures of the catalysts and their performance as well as the corresponding reaction mechanisms. In this review, we summarized some recent progress in the understanding of the active structures of several metal oxide-based catalysts and the reaction mechanism, and the consequent tuning of their redox and acid sites for the selective oxidation of methanol. The catalysts included supported molybdenum oxides, supported vanadium oxides, and heteropolyacids with Keggin structures as well as rhenium oxides and ruthenium oxides recently explored for the methanol oxidation. Such progress provides insights into the design of novel catalysts more efficient for the oxidative conversion of methanol towards the targeted products.
-
-
-
[1]
(1) Olah, G. A.; Molnár, Á. Hydrocarbon Chemistry, 2nd ed.; JohnWiley & Sons: Hoboken, New Jersey, 2003; pp 114-117.
-
[2]
(2) Xu, X. D.; Moulijn, J. A. Energy & Fuels 1996, 10, 305. doi: 10.1021/ef9501511
-
[3]
(3) Hamelinck, C. N.; Faaij, A. P. C. J. Power Sources 2002, 111, 1.doi: 10.1016/S0378-7753(02)00220-3
-
[4]
(4) Olah, G. A.; eppert, A.; Prakash, G. K. S. Beyond Oil and Gas: The Methanol Economy;Wiley-VCH:Weinheim, 2009; pp168-173.
-
[5]
(5) Deo, G.;Wachs, I. E. J. Catal. 1994, 146, 323. doi: 10.1006/jcat.1994.1071
-
[6]
(6) Hu, H. C.;Wachs, I. E. J. Phys. Chem. 1995, 99, 10911. doi: 10.1021/j100027a035
-
[7]
(7) Yuan, Y. Z.; Iwasawa, Y. J. Phys. Chem. B 2002, 106, 4441. doi: 10.1021/jp013770l
-
[8]
(8) Liu, H. C.; Iglesia, E. J. Phys. Chem. B 2005, 109, 2155. doi: 10.1021/jp0401980
-
[9]
(9) Liu, H. C.; Iglesia, E. J. Phys. Chem. B 2003, 107, 10840. doi: 10.1021/jp0301554
-
[10]
(10) Tatibouet, J. M. Appl. Catal. A-Gen. 1997, 148, 213. doi: 10.1016/S0926-860X(96)00236-0
-
[11]
(11) Badlani, M.;Wachs, I. E. Catal. Lett. 2001, 75, 137. doi: 10.1023/A:1016715520904
-
[12]
(12) Wachs, I. E. Catal. Today 2005, 100, 79. doi: 10.1016/j.cattod.2004.12.019
-
[13]
(13) Oyama, S. T.; Radhakrishnan, R.; Seman, M.; Kondo, J. N.;Domen, K.; Asakura, K. J. Phys. Chem. B 2003, 107, 1845. doi: 10.1021/jp0220276
-
[14]
(14) Vitry, D.; Morikawa, Y.; Dubois, J. L.; Ueda,W. Appl. Catal. A-Gen. 2003, 251, 411. doi: 10.1016/S0926-860X(03)00381-8
-
[15]
(15) Cavani, F.; Trifiro, F. Catal. Today 1995, 24, 307. doi: 10.1016/0920-5861(95)00051-G
-
[16]
(16) Chen, K. D.; Xie, S. B.; Bell, A. T.; Iglesia, E. J. Catal. 2001,198, 232. doi: 10.1006/jcat.2000.3125
-
[17]
(17) Tsilomelekis, G.; Boghosian, S. J. Phys. Chem. C 2011, 115,2146. doi: 10.1021/jp1098987
-
[18]
(18) Chempath, S.; Zhang, Y. H.; Bell, A. T. J. Phys. Chem. C 2007,111, 1291. doi: 10.1021/jp064741j
-
[19]
(19) Lee, E. L.;Wachs, I. E. J. Phys. Chem. C 2007, 111, 14410. doi: 10.1021/jp0735482
-
[20]
(20) Tsilomelekis, G.; Boghosian, S. Phys. Chem. Chem. Phys. 2012,14, 2216.
-
[21]
(21) Handzlik, J.; Sautet, P. J. Phys. Chem. C 2008, 112, 14456. doi: 10.1021/jp802372e
-
[22]
(22) Liu, H. C.; Cheung, P.; Iglesia, E. J. Catal. 2003, 217, 222.
-
[23]
(23) Christodoulakis, A.; Heracleous, E.; Lemonidou, A. A.;Boghosian, S. J. Catal. 2006, 242, 16. doi: 10.1016/j.jcat.2006.05.024
-
[24]
(24) Li,W. Z.; Huang, H.; Li, H. J.; Zhang,W.; Liu, H. C. Langmuir2008, 24, 8358. doi: 10.1021/la800370r
-
[25]
(25) Hamraoui, K.; Cristol, S.; Payen, E.; Paul, J. F. J. Mol. Struct. - Theochem 2009, 903, 73. doi: 10.1016/j.theochem.2008.09.044
-
[26]
(26) Chen, K. D.; Bell, A. T.; Iglesia, E. J. Catal. 2002, 209, 35. doi: 10.1006/jcat.2002.3620
-
[27]
(27) Liu, H. C.; Cheung, P.; Iglesia, E. J. Phys. Chem. B 2003, 107,4118. doi: 10.1021/jp0221744
-
[28]
(28) Brandhorst, M.; Cristol, S.; Capron, M.; Dujardin, C.; Vezin, H.;Le bourdon, G.; Payen, E. Catal. Today 2006, 113, 34. doi: 10.1016/j.cattod.2005.11.008
-
[29]
(29) Aritani, H.; Fukuda, O.; Miyaji, A.; Hasegawa, S. Appl. Surf. Sci. 2001, 180, 261. doi: 10.1016/S0169-4332(01)00366-X
-
[30]
(30) Tsilomelekis, G.; Christodoulakis, A.; Boghosian, S. Catal. Today 2007, 127, 139. doi: 10.1016/j.cattod.2007.03.026
-
[31]
(31) Zhang, S. H.; Zhang, H. P.; Li,W. Z.; Zhang,W.; Huang, H.;Liu, H. C. Acta Phys. -Chim. Sin. 2010, 26, 1879. [张胜红,张鸿鹏, 李为臻, 张伟, 黄华, 刘海超. 物理化学学报,2010, 26, 1879.] doi: 10.3866/PKU.WHXB20100732
-
[32]
(32) Shannon, I. J.; Maschmeyer, T.; Oldroyd, R. D.; Sankar, G.;Thomas, J. M.; Pernot, H.; Balikdjian, J. P.; Che, M. J. Chem. Soc. Faraday Trans. 1998, 94, 1495. doi: 10.1039/a800054i
-
[33]
(33) Grabowski, R.; Grzybowska, B.; Haber, J.; Sloczynski, J. React. Kinet. Catal. Lett. 1975, 2, 81. doi: 10.1007/BF02060956
-
[34]
(34) Wachs, I. E.; Saleh, R. Y.; Chan, S. S.; Chersich, C. C. Appl. Catal. 1985, 15, 339. doi: 10.1016/S0166-9834(00)81848-5
-
[35]
(35) Blasco, T.; Lopez-Nieto, J. M. Appl. Catal. A-Gen. 1997, 157,117. doi: 10.1016/S0926-860X(97)00029-X
-
[36]
(36) Cavalli, P.; Cavani, F.; Manenti, I.; Trifiro, F. Catal. Today 1987,1, 245. doi: 10.1016/0920-5861(87)80043-3
-
[37]
(37) Kumar, C. P.; Reddy, K. R.; Rao, V. V.; Chary, K. V. R. Green Chem. 2002, 4, 513. doi: 10.1039/b206581a
-
[38]
(38) Olthof, B.; Khodakov, A.; Bell, A. T.; Iglesia, E. J. Phys. Chem. B 2000, 104, 1516. doi: 10.1021/jp9921248
-
[39]
(39) Bronkema, J. L.; Leo, D. C.; Bell, A. T. J. Phys. Chem. C 2007,111, 14530. doi: 10.1021/jp073826x
-
[40]
(40) Bronkema, J. L.; Bell, A. T. J. Phys. Chem. C 2008, 112, 6404.doi: 10.1021/jp7110692
-
[41]
(41) Tanaka, T.; Yamashita, H.; Tsuchitani, R.; Funabiki, T.; Yoshida,S. J. Chem. Soc. Faraday Trans. 1988, 84, 2987. doi: 10.1039/f19888402987
-
[42]
(42) Eckert, H.;Wachs, I. E. J. Phys. Chem. 1989, 93, 6796. doi: 10.1021/j100355a043
-
[43]
(43) Weckhuysen, B. M.; Jehng, J. M.;Wachs, I. E. J. Phys. Chem. B2000, 104, 7382. doi: 10.1021/jp000055n
-
[44]
(44) Busca, G. J. Mol. Catal. 1989, 50, 241.
-
[45]
(45) Gao, X. T.; Bare, S. R.;Weckhuysen, B. M.;Wachs, I. E.J. Phys. Chem. B 1998, 102, 10842. doi: 10.1021/jp9826367
-
[46]
(46) Shapovalov, V.; Metiu, H. J. Phys. Chem. C 2007, 111, 14179.doi: 10.1021/jp074481l
-
[47]
(47) Vining,W. C.; Strunk, J.; Bell, A. T. J. Catal. 2012, 285, 160.doi: 10.1016/j.jcat.2011.09.024
-
[48]
(48) Ganduglia-Pirovano, M. V.; Popa, C.; Sauer, J.; Abbott, H.; Uhl,A.; Baron, M.; Stacchiola, D.; Bondarchuk, O.; Shaikhutdinov,S.; Freund, H. J. J. Am. Chem. Soc. 2010, 132, 2345. doi: 10.1021/ja910574h
-
[49]
(49) Burcham, L. J.;Wachs, I. E. Catal. Today 1999, 49, 467. doi: 10.1016/S0920-5861(98)00442-8
-
[50]
(50) Burcham, L. J.; Badlani, M.;Wachs, I. E. J. Catal. 2001, 203,104. doi: 10.1006/jcat.2001.3312
-
[51]
(51) Bronkema, J. L.; Bell, A. T. J. Phys. Chem. C 2007, 111, 420.doi: 10.1021/jp0653149
-
[52]
(52) odrow, A.; Bell, A. T. J. Phys. Chem. C 2007, 111, 14753.doi: 10.1021/jp072627a
-
[53]
(53) Vining,W. C.; Strunk, J.; Bell, A. T. J. Catal. 2011, 281, 222.doi: 10.1016/j.jcat.2011.05.001
-
[54]
(54) Weber, R. S. J. Phys. Chem. 1994, 98, 2999. doi: 10.1021/j100062a042
-
[55]
(55) Kim, H. Y.; Lee, H. M.; Pala, R. G. S.; Metiu, H. J. Phys. Chem. C 2009, 113, 16083. doi: 10.1021/jp903298w
-
[56]
(56) Abbott, H. L.; Uhl, A.; Baron, M.; Lei, Y.; Meyer, R. J.;Stacchiola, D. J.; Bondarchuk, O.; Shaikhutdinov, S.; Freund,H. J. J. Catal. 2010, 272, 82. doi: 10.1016/j.jcat.2010.03.009
-
[57]
(57) Gao, X. T.;Wachs, I. E. Top. Catal. 2002, 18, 243. doi: 10.1023/A:1013842722877
-
[58]
(58) odrow, A.; Bell, A. T. J. Phys. Chem. C 2008, 112, 13204.doi: 10.1021/jp801339q
-
[59]
(59) Holstein,W. L.; Machiels, C. J. J. Catal. 1996, 162, 118. doi: 10.1006/jcat.1996.0265
-
[60]
(60) Jackson, S. D.; Hargreaves, J. S. J. Metal Oxide Catalysis;Wiley-VCH:Weinheim, 2009; pp 487-498.
-
[61]
(61) Khaliullin, R. Z.; Bell, A. T. J. Phys. Chem. B 2002, 106, 7832.doi: 10.1021/jp014695h
-
[62]
(62) Dobler, J.; Pritzsche, M.; Sauer, J. J. Am. Chem. Soc. 2005, 127,10861. doi: 10.1021/ja051720e
-
[63]
(63) Gao, X. T.; Bare, S. R.; Fierro, J. L. G.;Wachs, I. E. J. Phys. Chem. B 1999, 103, 618. doi: 10.1021/jp983357m
-
[64]
(64) Gao, X. T.; Fierro, J. L. G.;Wachs, I. E. Langmuir 1999, 15,3169. doi: 10.1021/la981254p
-
[65]
(65) Gao, X. T.;Wachs, I. E. J. Catal. 2000, 192, 18. doi: 10.1006/jcat.2000.2822
-
[66]
(66) Fubini, B.; Bolis, V.; Cavena , A.; Garrone, E.; Uglien , P.Langmuir 1993, 9, 2712. doi: 10.1021/la00034a034
-
[67]
(67) Feng, T.; Vohs, J. M. J. Catal. 2004, 221, 619. doi: 10.1016/j.jcat.2003.10.002
-
[68]
(68) Zhanpeisov, N. U.; Fukumura, H. J. Phys. Chem. C 2007, 111,16941. doi: 10.1021/jp074869g
-
[69]
(69) Eder, D.; Kramer, R. Phys. Chem. Chem. Phys. 2003, 5, 1314.
-
[70]
(70) Strunk, J.; Vining,W. C.; Bell, A. T. J. Phys. Chem. C 2010,114, 16937. doi: 10.1021/jp100104d
-
[71]
(71) Kim, H. Y.; Lee, H. M.; Metiu, H. J. Phys. Chem. C 2010, 114,13736. doi: 10.1021/jp103361v
-
[72]
(72) Vining,W. C.; odrow, A.; Strunk, J.; Bell, A. T. J. Catal.2010, 270, 163. doi: 10.1016/j.jcat.2009.12.017
-
[73]
(73) Ross-Medgaarden, E. I.;Wachs, I. E.; Knowles,W. V.; Burrows,A.; Kiely, C. J.;Wong, M. S. J. Am. Chem. Soc. 2009, 131, 680.doi: 10.1021/ja711456c
-
[74]
(74) Masamoto, J.; Iwaisako, T.; Chohno, M.; Kawamura, M.;Ohtake, J.; Matsuzaki, K. J. Appl. Polym. Sci. 1993, 50, 1299.doi: 10.1002/app.1993.070500801
-
[75]
(75) Zhang, Q. D.; Tan, Y. S.; Yang, C. H.; Han, Y. Z. J. Mol. Catal. A-Chem. 2007, 263, 149. doi: 10.1016/j.molcata.2006.08.044
-
[76]
(76) Lambiotte, G. New Process for Continuous Production ofMethylal. CH Patent 688041, 1997.
-
[77]
(77) Satoh, S.; Tanigawa, Y. Process for Producing Methylal. USPatent 6 379 507, 2002.
-
[78]
(78) Yuan, Y. Z.; Liu, H. C.; Imoto, H.; Shido, T.; Iwasawa, Y.J. Catal. 2000, 195, 51. doi: 10.1006/jcat.2000.2990
-
[79]
(79) Yuan, Y. Z.; Shido, T.; Iwasawa, Y. Chem. Commun. 2000, No.15, 1421.
-
[80]
(80) Zhang, Y. H.; Drake, I. J.; Briggs, D. N.; Bell, A. T. J. Catal.2006, 244, 219. doi: 10.1016/j.jcat.2006.09.002
-
[81]
(81) Royer, S.; Secordel, X.; Brandhorst, M.; Dumeignil, F.; Cristol,S.; Dujardin, C.; Capron, M.; Payena, E.; Dubois, J. L. Chem. Commun. 2008, No. 7, 865.
-
[82]
(82) rnay, J.; Secordel, X.; Tesquet, G.; de Menorval, B.; Cristol,S.; Fongarland, P.; Capron, M.; Duhamel, L.; Payen, E.;Dubois, J. L.; Dumeignil, F. Green Chem. 2010, 12, 1722. doi: 10.1039/c0gc00194e
-
[83]
(83) Fu, Y. C.; Shen, J. Y. Chem. Commun. 2007, No. 21, 2172.
-
[84]
(84) Zhao, H. Y.; Bennici, S.; Shen, J. Y.; Auroux, A. J. Catal. 2010,272, 176. doi: 10.1016/j.jcat.2010.02.028
-
[85]
(85) Zhao, H. Y.; Bennici, S.; Cai, J. X.; Shen, J. Y.; Auroux, A.J. Catal. 2010, 274, 259. doi: 10.1016/j.jcat.2010.07.011
-
[86]
(86) Dunn, J. P.; Jehng, J. M.; Kim, D. S.; Briand, L. E.; Stenger, H.G.;Wachs, I. E. J. Phys. Chem. B 1998, 102, 6212. doi: 10.1021/jp9814247
-
[87]
(87) Guo, H. Q.; Li, D. B.; Jiang, D.; Li,W. H.; Sun, Y. H. Catal. Commun. 2010, 11, 396. doi: 10.1016/j.catcom.2009.11.009
-
[88]
(88) Lu, X. L.; Qin, Z. F.; Dong, M.; Zhu, H. Q.;Wang, G. F.;Zhao, Y. B.; Fan,W. B.;Wang, J. G. Fuel 2011, 90, 1335. doi: 10.1016/j.fuel.2011.01.007
-
[89]
(89) Chen, S.;Wang, S. P.; Ma, X. B.; ng, J. L. Chem. Commun.2011, No. 47, 9345.
-
[90]
(90) Sun, Q.; Liu, J.W.; Cai, J. X.; Fu, Y. C.; Shen, J. Y. Catal. Commun. 2009, 11, 47. doi: 10.1016/j.catcom.2009.08.010
-
[91]
(91) Zhao, H. Y.; Bennici, S.; Shen, J. Y.; Auroux, A. Appl. Catal. A-Gen. 2010, 385, 224. doi: 10.1016/j.apcata.2010.07.017
-
[92]
(92) Zhao, H. Y.; Bennici, S.; Shen, J. Y.; Auroux, A. J. Therm. Anal. Calorim. 2010, 99, 843. doi: 10.1007/s10973-009-0499-0
-
[93]
(93) Misono, M. Chem. Commun. 2001, No. 13, 1141.
-
[94]
(94) Okuhara, T.; Mizuno, N.; Misono, M. Appl. Catal. A-Gen.2001, 222, 63. doi: 10.1016/S0926-860X(01)00830-4
-
[95]
(95) Damyanova, S.; Cubeiro, M. L.; Fierro, J. L. G. J. Mol. Catal. A-Chem. 1999, 142, 85. doi: 10.1016/S1381-1169(98)00279-9
-
[96]
(96) Liu, H. C.; Bayat, N.; Iglesia, E. Angew. Chem. Int. Edit. 2003,42, 5072. doi: 10.1002/(ISSN)1521-3773
-
[97]
(97) Liu, H. C.; Iglesia, E. J. Catal. 2004, 223, 161.
-
[98]
(98) Guo, H. Q.; Li, D. B.; Xiao, H. C.; Zhang, J. L.; Li,W. H.;Sun, Y. H. Kor. J. Chem. Eng. 2009, 26, 902. doi: 10.1007/s11814-009-0151-5
-
[99]
(99) Nakka, L.; Molinari, J. E.;Wachs, I. E. J. Am. Chem. Soc.2009, 131, 15544. doi: 10.1021/ja904957d
-
[100]
(100) Molinari, J. E.; Nakka, L.; Kim, T.;Wachs, I. E. ACS Catal.2011, 1, 1536. doi: 10.1021/cs2001362
-
[101]
(101) Mol, J. C. Catal. Today 1999, 51, 289. doi: 10.1016/S0920-5861(99)00051-6
-
[102]
(102) Liu, H. C.; Gaigneaux, E. M.; Imoto, H.; Shido, T.; Iwasawa,Y. Appl. Catal. A-Gen. 2000, 202, 251. doi: 10.1016/S0926-860X(00)00539-1
-
[103]
(103) Wachs, I. E.; Deo, G.; Andreini, A.; Vuurman, M. A.; deBoer,M. J. Catal. 1996, 160, 322. doi: 10.1006/jcat.1996.0152
-
[104]
(104) Yuan, Y. Z.; Tsai, K. R.; Liu, H. C.; Iwasawa, Y. Top. Catal.2003, 22, 9. doi: 10.1023/A:1021451309465
-
[105]
(105) Lee, E. L.;Wachs, I. E. J. Phys. Chem. C 2008, 112, 6487. doi: 10.1021/jp076485w
-
[106]
(106) Lacheen, H. S.; Cordeiro, P. J.; Iglesia, E. J. Am. Chem. Soc.2006, 128, 15082. doi: 10.1021/ja065832x
-
[107]
(107) Lacheen, H. S.; Cordeiro, P. J.; Iglesia, E. Chem.-Eur. J. 2007,13, 3048. doi: 10.1002/(ISSN)1521-3765
-
[108]
(108) Nikonova, O. A.; Capron, M.; Fang, G.; Faye, J.; Mamede, A.S.; Jalowiecki-Duhamel, L.; Dumeignil, F.; Seisenbaeva, G. A.J. Catal. 2011, 279, 310. doi: 10.1016/j.jcat.2011.01.028
-
[109]
(109) Tougerti, A.; Cristol, S.; Berrier, E.; Briois, V.; La Fontaine, C.;Villain, F.; Joly, Y. Phys. Rev. B 2012, 85 (12), 125136. doi: 10.1103/PhysRevB.85.125136
-
[110]
(110) Yang, T. J.; Lunsford, J. H. J. Catal. 1987, 103, 55. doi: 10.1016/0021-9517(87)90092-3
-
[111]
(111) Chan, A. S. Y.; Chen,W. H.;Wang, H.; Rowe, J. E.; Madey, T.E. J. Phys. Chem. B 2004, 108, 14643. doi: 10.1021/jp040168x
-
[112]
(112) Liu, J. L.; Zhan, E. S.; Cai,W. J.; Li, J.; Shen,W. J. Catal. Lett.2008, 120, 274. doi: 10.1007/s10562-007-9280-9
-
[113]
(113) Hardcastle, F. D.;Wachs, I. E.; Horsley, J. A.; Via, G. H.J. Mol. Catal. 1988, 46, 15. doi: 10.1016/0304-5102(88)85081-8
-
[114]
(114) Albonetti, S.; Cavani, F.; Trifiro, F. Catal. Rev.-Sci. Eng. 1996,38, 413. doi: 10.1080/01614949608006463
-
[115]
(115) Secordel, X.; Yoboue, A.; Cristol, S.; Lancelot, C.; Capron, M.;Paul, J. F.; Berrier, E. J. Solid State Chem. 2011, 184, 2806.doi: 10.1016/j.jssc.2011.08.002
-
[116]
(116) Zang, L.; Kisch, H. Angew. Chem. Int. Edit. 2000, 39, 3921.doi: 10.1002/(ISSN)1521-3773
-
[117]
(117) Zhan, B. Z.; White, M. A.; Sham, T. K.; Pincock, J. A.; Doucet,R. J.; Rao, K. V. R.; Robertson, K. N.; Cameron, T. S. J. Am. Chem. Soc. 2003, 125, 2195. doi: 10.1021/ja0282691
-
[118]
(118) Zhan, B. Z.; White, M. A.; Pincock, J. A.; Robertson, K. N.;Cameron, T. S.; Sham, T. K. Can. J. Chem. -Rev. Can. Chim.2003, 81, 764. doi: 10.1139/v03-060
-
[119]
(119) Li,W. Z.; Liu, H. C.; Iglesia, E. J. Phys. Chem. B 2006, 110,23337. doi: 10.1021/jp0648689
-
[120]
(120) Lee, J. S.; Kim, J. C.; Kim, Y. G. Appl. Catal. 1990, 57, 1. doi: 10.1016/S0166-9834(00)80720-4
-
[121]
(121) Jenner, G. Appl. Catal. A-Gen. 1995, 121, 25.
-
[122]
(122) Huang, H.; Li,W. Z.; Liu, H. C. Catal. Today 2012, 183, 58.doi: 10.1016/j.cattod.2011.05.021
-
[123]
(123) Lichtenberger, J.; Lee, D.; Iglesia, E. Phys. Chem. Chem. Phys.2007, 9, 4902.
-
[124]
(124) Wittstock, A.; Zielasek, V.; Biener, J.; Friend, C. M.; Baumer,M. Science 2010, 327, 319. doi: 10.1126/science.1183591
-
[125]
(125) Zhan, B. Z.; Iglesia, E. Angew. Chem. Int. Edit. 2007, 46, 3697.doi: 10.1002/(ISSN)1521-3773
-
[126]
(126) Yu, H.; Zeng, K.; Fu, X. B.; Zhang, Y.; Peng, F.;Wang, H. J.;Yang, J. J. Phys. Chem. C 2008, 112, 11875. doi: 10.1021/jp804003g
-
[1]
-
-
-
[1]
Zhuoyan Lv , Yangming Ding , Leilei Kang , Lin Li , Xiao Yan Liu , Aiqin Wang , Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015
-
[2]
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
-
[3]
Yongmei Liu , Lisen Sun , Zhen Huang , Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020
-
[4]
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
-
[5]
Zongpei Zhang , Yanyang Li , Yanan Si , Kai Li , Shuangquan Zang . Developing a Chemistry Experiment Center Employing a Multifaceted Approach to Serve High-Quality Laboratory Education. University Chemistry, 2024, 39(7): 13-19. doi: 10.12461/PKU.DXHX202404041
-
[6]
.
CCS Chemistry | 超分子活化底物为自由基促进高效选择性光催化氧化
. CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -. -
[7]
Ke Li , Chuang Liu , Jingping Li , Guohong Wang , Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009
-
[8]
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210
-
[9]
Quanliang Chen , Zhaohui Zhou . Research on the Active Site of Nitrogenase over Fifty Years. University Chemistry, 2024, 39(7): 287-293. doi: 10.3866/PKU.DXHX202310133
-
[10]
Jiantao Zai , Hongjin Chen , Xiao Wei , Li Zhang , Li Ma , Xuefeng Qian . The Learning-Centered Problem-Oriented Experimental Teaching. University Chemistry, 2024, 39(4): 40-47. doi: 10.3866/PKU.DXHX202309023
-
[11]
Xiaohang Qiu , Yang Liu , Fei Ding , Jie Han , Yijun Li . Construction of a Demonstration Center for Experimental Chemistry Education in the New Era. University Chemistry, 2024, 39(7): 26-31. doi: 10.12461/PKU.DXHX202404112
-
[12]
Junlin Yan , Changhao Wang , Quanguo Zhai , Chenghui Liu , Dong Xue . A New Construction Model and Practice of Demonstration Center for Experimental Chemistry Education. University Chemistry, 2024, 39(7): 64-68. doi: 10.12461/PKU.DXHX202405005
-
[13]
Haorui Gu , Ning Li , Zhanxiang Liu , Xufeng Lin . Construction and Development of Chemistry Experimental Teaching Center under the Background of the “101 Plan”. University Chemistry, 2024, 39(7): 110-115. doi: 10.12461/PKU.DXHX202405022
-
[14]
Nuo Zhang , Xiaojun Sun , Hongmin Ma , Yan Li , Xiang Ren , Dan Wu , Chuannan Luo , Qin Wei . Construction and Practice of National Experimental Teaching Demonstration Center of Applied Chemistry. University Chemistry, 2024, 39(7): 116-120. doi: 10.12461/PKU.DXHX202405031
-
[15]
Yan Zhao , Weiping Luo , Haoran Liu , Yongqing Kuang , Zhaoyang Wu , Weijun Yang , Yongjun Li , Dongcai Guo . Construction and Practice of the Chemistry and Chemical Engineering Experimental Teaching Center of Hunan University. University Chemistry, 2024, 39(7): 147-152. doi: 10.12461/PKU.DXHX202405059
-
[16]
Yang Liu , Ying Yu , Yilei Wang , Chao Chen . Building of a High-Quality, Multi-Level Teaching Team in Chemistry Experimental Teaching Center. University Chemistry, 2024, 39(7): 166-171. doi: 10.12461/PKU.DXHX202405069
-
[17]
Yecang Tang , Shan Ling , Zhen Fang . Exploration of a Hierarchical and Integration-Oriented Talent Training Model in the Demonstration Center for Experimental Chemistry Education. University Chemistry, 2024, 39(7): 188-192. doi: 10.12461/PKU.DXHX202405107
-
[18]
Rong Lai , Jie Li , Xianfang Xu , Shui Hu , Tao Chen , Houjin Li , Guping Hu , Hongyan Chen , Fang Zhu . Taking the Overall Relocation as an Opportunity to Accelerate the Development of Chemical Experimental Teaching Centers: A Case Study of the National Demonstration Center for Experimental Chemistry Education at Sun Yat-Sen University. University Chemistry, 2024, 39(4): 33-39. doi: 10.3866/PKU.DXHX202310115
-
[19]
Fei Nie , Jiawei Liu , Chunxin Zhao , Hongbo Cui , Yan Li , Bin Cui . Construction of a Chemical Experimental Demonstration Center Supporting the Cultivation of Top-Notch Innovative Talents under the “Grand Ideological and Political” Framework: A Case Study of Northwest University. University Chemistry, 2024, 39(7): 32-39. doi: 10.12461/PKU.DXHX202404122
-
[20]
Jibin Miao , Changjie Mao , Baokang Jin . Exploration and Practice of Virtual and Real Combination Practical Curriculum During the Construction of the National Demonstration Center for Experimental Education: A Case Study of the National Demonstration Center for Experimental Chemistry & Chemical Engineering Education (Anhui University). University Chemistry, 2024, 39(7): 106-109. doi: 10.12461/PKU.DXHX202405021
-
[1]
Metrics
- PDF Downloads(917)
- Abstract views(2109)
- HTML views(3)