Citation: JIAO Shu-Hong, XU Dong-Sheng, XU Li-Fen, ZHANG Xiao-Guang. Recent Progress in Electrochemical Synthesis and Morphological Control of Metal Oxide Nanostructures[J]. Acta Physico-Chimica Sinica, ;2012, 28(10): 2436-2446. doi: 10.3866/PKU.WHXB201209145 shu

Recent Progress in Electrochemical Synthesis and Morphological Control of Metal Oxide Nanostructures

  • Received Date: 30 August 2012
    Available Online: 14 September 2012

    Fund Project: 国家自然科学基金(51121091, 21133001, 61176004) (51121091, 21133001, 61176004) 国家重点基础研究发展规划项目(973) (2007CB936201, 2011CB808702) (973) (2007CB936201, 2011CB808702)国家光电信息控制和安全技术重点实验室基金(9140C150304110C1502)资助 (9140C150304110C1502)

  • There has been considerable focus on the synthesis of metal oxide nanostructures because of their extensive structures, unique properties, and wide applications. The morphological control of metal oxide nanostructures is of interest for tuning their performance and expanding their range of applications. Electrochemical methods have become a common way of controlling the morphologies of metal oxides, owing to their simple operation, ease of control, and flexible modes. This paper presents a brief overview of our research in the electrochemical synthesis and morphological control of metal oxide nanostructures. We will also discuss the crystal growth mechanism and the morphology control of different metal oxides during the electrochemical deposition process, which lays the foundation for orientation design and fabrication of functional materials.

  • 加载中
    1. [1]

      (1) Wang, Z. L. Nanowires and Nanobelts: Materials, Properties and Devices; Kluwer: Dordrecht, 2003.

    2. [2]

      (2) Nalwa, H. S. Encyclopedia of Nanoscience and Nanotechnology; American Scientific Publishers: New York,2004.

    3. [3]

      (3) Alivisatos, A. P. Science 1996, 271, 933. doi: 10.1126/science.271.5251.933

    4. [4]

      (4) Xia, Y.; Yang, P.; Sun, Y.;Wu, Y.; Mayers, B.; Gates, B.; Yin, Y.;Kim, F.; Yan, H. Adv. Mater. 2003, 15, 353. doi: 10.1002/adma.200390087

    5. [5]

      (5) El-Sayed, M. A. Accounts Chem. Res. 2001, 34, 257. doi: 10.1021/ar960016n

    6. [6]

      (6) Jun, Y.W.; Choi, J. S.; Cheon, J.W. Angew. Chem. Int. Edit.2006, 45, 3414. doi: 10.1002/(ISSN)1521-3773

    7. [7]

      (7) Jiang, P.; Bertone, J. F.; Colvin, V. L. Science 2001, 291, 453.doi: 10.1126/science.291.5503.453

    8. [8]

      (8) Huang, Y.; Duan, X.; Cui, Y.; Lauhon, L.; Kim, K.; Lieber, C.M. Science 2001, 294, 1313. doi: 10.1126/science.1066192

    9. [9]

      (9) Duan, X.; Huang, Y.; Lieber, C. M. Nano Lett. 2002, 2, 487. doi: 10.1021/nl025532n

    10. [10]

      (10) Duan, M.; Lai, X.; odman, D.W. Science 1998, 281, 1647.doi: 10.1126/science.281.5383.1647

    11. [11]

      (11) Sun, S.; Murray, C. B.;Weller, D.; Folks, L.; Moser, A. Science2000, 287, 1989. doi: 10.1126/science.287.5460.1989

    12. [12]

      (12) Jiao, S. H.; Xu, L. F.; Jiang, K.; Xu, D. S. Adv. Mater. 2006, 18,1174. doi: 10.1002/(ISSN)1521-4095

    13. [13]

      (13) Liang, Y. Q.; Zhen, C. G.; Zou, D. C.; Xu, D. S. J. Am. Chem. Soc. 2004, 126, 16338. doi: 10.1021/ja044545v

    14. [14]

      (14) Yu,W. D.; Li, X. M.; Gao, X. D. Appl. Phys. Lett. 2004, 84,2658. doi: 10.1063/1.1695097

    15. [15]

      (15) Fan,W. L.; Song, X. Y.; Bu, Y. X.; Sun, S. X.; Zhao, X. J. Phys. Chem. B 2006, 110, 23247. doi: 10.1021/jp0646832

    16. [16]

      (16) Miao, Z.; Xu, D. S.; Ouyang, J. H.; Guo, G. L.; Zhao, X. S.;Tang, Y. Q. Nano Lett. 2002, 2, 717. doi: 10.1021/nl025541w

    17. [17]

      (17) Takahashi, K.; Limmer, S. J.;Wang, Y.; Cao, G. Z. J. Phys. Chem. B 2004, 108, 9795. doi: 10.1021/jp0491820

    18. [18]

      (18) Yang, J. H.; Liu, G. M.; Lu, J.; Qiu, Y. F.; Yang, S. H. Appl. Phys. Lett. 2007, 90, 103109. doi: 10.1063/1.2711532

    19. [19]

      (19) She, G.W.; Zhang, X. H.; Shi,W. S.; Fan, X.; Chang, J. C.Electrochem. Commun. 2007, 9, 2784. doi: 10.1016/j.elecom.2007.09.019

    20. [20]

      (20) Siegfried, M. J.; Choi, K. S. Angew. Chem. Int. Edit. 2005, 44,3218. doi: 10.1002/(ISSN)1521-3773

    21. [21]

      (21) Guo, S. J.; Fang, Y. X.; Dong, S. J.;Wang, E. K. Inorg. Chem.2007, 46, 9539.

    22. [22]

      (22) Xu, L. F.; Chen, Q.W.; Xu, D. S. J. Phys. Chem. C 2007, 111,11560. doi: 10.1021/jp071536a

    23. [23]

      (23) Li, X.; Jiang, Y.; Shi, Z.W.; Xu, Z. Chem. Mater. 2007, 19,5424. doi: 10.1021/cm071180f

    24. [24]

      (24) Cha, Q. X. Introduction to Electrode Kinetics, 3rd ed.; ScientificPublishers: Beijing, 2007; pp 301-315. [查全性. 电极过程动力学导论, 第三版. 北京: 科学出版社, 2007: 301-315.]

    25. [25]

      (25) Tian, Z.W. Electrochemical Research Methods, 1st ed.;Scientific Publishers: Beijing, 1984. [田昭武. 电化学研究方法, 第一版. 北京: 科学出版社, 1984.]

    26. [26]

      (26) Han, D. G.; Gao, Z. D.; Gao, P. L. Physical Chemistry, 1st ed.;Higher Education Press: Beijing, 2001; pp 645-656. [韩德刚,高执棣, 高盘良. 物理化学, 第一版. 北京: 高等教育出版社,2001: 645-656.]

    27. [27]

      (27) Wang, Z. L.; Kong, X. Y.; Ding, Y. Adv. Funct. Mater. 2004, 14,943. doi: 10.1002/(ISSN)1616-3028

    28. [28]

      (28) Mann, S. Nature 1993, 265, 499.

    29. [29]

      (29) Lao, J. Y.;Wen, J. G.; Ren, Z. F. Nano Lett. 2002, 2, 1287. doi: 10.1021/nl025753t

    30. [30]

      (30) Liu, J.; Zhang, Y.; Qi, J. J. Mater. Lett. 2006, 60, 2623. doi: 10.1016/j.matlet.2006.01.051

    31. [31]

      (31) Huang, L.;Wright, S.; Yang, S. J. Phys. Chem. B 2004, 108,19901. doi: 10.1021/jp045556d

    32. [32]

      (32) Izaki, M.; Omi, T. Appl. Phys. Lett. 1996, 68, 2439. doi: 10.1063/1.116160

    33. [33]

      (33) Peulon, S.; Lincot, D. J. Electrochem. Soc. 1998, 145, 864. doi: 10.1149/1.1838359

    34. [34]

      (34) Pauprte, T.; Lincot, D. Electrochim. Acta 2000, 45, 3345. doi: 10.1016/S0013-4686(00)00405-9

    35. [35]

      (35) Liu, R.; Vertegel, A. A.; Bohannan, E.W.; Sorenson, T. A.;Switzer, J. A. Chem. Mater. 2001, 13, 508. doi: 10.1021/cm000763l

    36. [36]

      (36) Xu, L. F.; Guo, Y.; Liao, Q.; Zhang, J. P.; Xu, D. S. J. Phys. Chem. B 2005, 109, 13519. doi: 10.1021/jp051007b

    37. [37]

      (37) Ray, S. C. Sol. Energy Mat. Sol. Cells 2001, 68, 307. doi: 10.1016/S0927-0248(00)00364-0

    38. [38]

      (38) Ghijsen, J.; Tjeng, L. H.; van Elp, J.; Eskes, H.;Westerink, J.;Sawatzky, G. A.; Czyzyk, M. T. Phys. Rev. B 1998, 38, 11322.

    39. [39]

      (39) Hara, M.; Kondo, T.; Komoda, M.; Ikeda, S.; Shinohara, K.;Tanaka, A.; Kondo, J. N.; Domen, K. Chem. Commun. 1998,357.

    40. [40]

      (40) Ikeda, S.; Takata, T.; Kondo, T.; Hitoki, G.; Hara, M.; Kondo, J.N.; Domen, K.; Hosono, H.; Kawazoeb, H.; Tanakac, A. Chem. Commun. 1998, 2185.

    41. [41]

      (41) Li, X.; Gao, H.; Murphy, C. J.; u, L. Nano Lett. 2004, 4,1903. doi: 10.1021/nl048941n

    42. [42]

      (42) Liu, R.; Kulp, E. A.; Oba, F.; Bohannan, E.W.; Ernst, F.;Switzer, J. A. Chem. Mater. 2005, 17, 725. doi: 10.1021/cm048296l

    43. [43]

      (43) Chang, Y.; Teo, J. J.; Zeng, H. C. Langmuir 2005, 21, 1074. doi: 10.1021/la047671l

    44. [44]

      (44) Sunagawa, I. Crystals: Growth, Morphology & Perfection;Cambridge University Press: Cambridge, UK, 2005.

    45. [45]

      (45) Wang, Z. L. J. Phys. Chem. B 2000, 104, 1153. doi: 10.1021/jp993593c

    46. [46]

      (46) Shi, E.W.; Chen, Z. Z.; Yuan, R. L.; Zheng, Y. Q. Hydrothermal Crystallography, 1st ed.; Scientific Publishers: Beijing, 2004.[施尔畏, 陈之战, 元如林, 郑燕青. 水热结晶学, 第一版. 北京:科学出版社, 2004.]

    47. [47]

      (47) Zhong,W. Z.; Hua, S. K. Crystal Growth Morphology;Scientific Publishers: Beijing, 1999. [仲维卓, 华素坤. 晶体生长形态学. 北京: 科学出版社, 1999.]

    48. [48]

      (48) Zhou, Y. C.; Switzer, J. A. Mater. Res. Innovations 1998, 2, 22.doi: 10.1007/s100190050056

    49. [49]

      (49) Switzer, J. A.; Kothari, H. M.; Bohannan, E.W. J. Phys. Chem. B 2002, 106, 4027.

    50. [50]

      (50) Liu, R.; Bohannan, E.W.; Switzer, J. A.; Oba, F.; Ernst, F. Appl. Phys. Lett. 1994, 83, 1944.

    51. [51]

      (51) Liu, R.; Oba, F.; Bohannan, E.W.; Ernst, F.; Switzer, J. A.Chem. Mater. 2003, 15, 4882. doi: 10.1021/cm034807c

    52. [52]

      (52) Siegfried, M. J.; Choi, K. S. Adv. Mater. 2004, 16, 1743. doi: 10.1002/(ISSN)1521-4095

    53. [53]

      (53) Brown, K. E. R.; Choi, K. S. Chem. Commun. 2006, 3311.

    54. [54]

      (54) Xu, L. F. Electrochemical Synthesis, Morphological Control andPerformance of Semiconductor Materials. Ph. D. Dissertation,Peking University, Beijing, 2007. [许荔芬. 半导体材料的电化学制备、形貌调控和性能研究[D]. 北京: 北京大学, 2007.]

    55. [55]

      (55) Jiao, S. H.; Jiang, K.; Zhang, Y. H.; Xiao, M.; Xu, L. F.; Xu, D.S. J. Phys. Chem. C 2008, 112, 3358. doi: 10.1021/jp710145a

    56. [56]

      (56) Cornell, R. M.; Schwertmann, U. The Iron Oxides, 2nd ed.;Wiley-VCH:Weinheim, Germany, 2004.

    57. [57]

      (57) Sone, E. D.;Weiner, S.; Addadi, L. Cryst. Growth Des. 2005, 5,2131. doi: 10.1021/cg050171l

    58. [58]

      (58) Lowenstam, H. A. Science 1971, 171, 487. doi: 10.1126/science.171.3970.487

    59. [59]

      (59) Mazeina, L.; Alexandra, N. Chem. Mater. 2007, 19, 825. doi: 10.1021/cm0623817

    60. [60]

      (60) Leibenguth, J. L.; Cohen, M. J. Electrochem. Soc. 1972, 119,987. doi: 10.1149/1.2404424

    61. [61]

      (61) Jiao, S. H.; Xu, L. F.; Hu, K. L.; Li, J. J.; Gao, S.; Xu, D. S.J. Phys. Chem. C 2010, 114, 269. doi: 10.1021/jp909072m

    62. [62]

      (62) Cheng, J. P.; Guo, R. Y.;Wang, Q. M. Appl. Phys. Lett. 2004,85, 5140. doi: 10.1063/1.1825067

    63. [63]

      (63) Jeong, J. S.; Lee, J. Y.; Cho, J. H. Chem. Mater. 2005, 17, 2752.doi: 10.1021/cm049387l

    64. [64]

      (64) Wu, G. S.; Xie, T.; Yuan, X. Y.; Li, Y.; Yang, L.; Xiao, Y. H.;Zhang, L. D. Solid State Commun. 2005, 134, 485. doi: 10.1016/j.ssc.2005.02.015

    65. [65]

      (65) Xu, L. F.; Liao, Q.; Zhang, J. P.; Ai, X. C.; Xu, D. S. J. Phys. Chem. C 2007, 111, 4549. doi: 10.1021/jp068485m

    66. [66]

      (66) Lao, J. Y.; Huang, J. Y.;Wang, D. Z.; Ren, Z. F. J. Mater. Chem.2004, 14, 770. doi: 10.1039/b311639e

    67. [67]

      (67) Park, J. H.; Park, J. G. Appl. Phys. A 2005, 80, 43. doi: 10.1007/s00339-004-2936-z

    68. [68]

      (68) Law, M.; Greene, L. E.; Johnson, J. C.; Saykally, R.; Yang, P. D.Nat. Mater. 2005, 4, 455. doi: 10.1038/nmat1387

    69. [69]

      (69) Zhang, T. R.; Dong,W. J.; Brewer, M. K.; Konar, D. J.; Njabon,R. N.; Tian, Z. R. J. Am. Chem. Soc. 2006, 128, 10960. doi: 10.1021/ja0631596

    70. [70]

      (70) Li, C.; Fang, G. J.; Su, F. H.; Li, G. H.;Wu, X. G.; Zhao, X. Z.Cryst. Growth Des. 2006, 6, 2588. doi: 10.1021/cg050357k

    71. [71]

      (71) Liu, J. P.; Huang, X. T.; Li, Y. Y.; Sulieman, K. M.; He, X.; Sun,F. L. J. Phys. Chem. B 2006, 110, 21865. doi: 10.1021/jp064487v

    72. [72]

      (72) Shen, G. Z.; Chen, D.; Lee, C. J. J. Phys. Chem. B 2006, 110,15689. doi: 10.1021/jp0630119

    73. [73]

      (73) Zhang, D. F.; Sun, L. D.; Jia, C. J.; Yan, Z. G.; You, L. P.; Yan,C. H. J. Am. Chem. Soc. 2005, 127, 13492. doi: 10.1021/ja054771k

    74. [74]

      (74) Gao, P. X.;Wang, Z. L. Appl. Phys. Lett. 2004, 84, 2883. doi: 10.1063/1.1702137

    75. [75]

      (75) Qin, Y.;Wang, X. D.;Wang, Z. L. Nature 2008, 451, 809. doi: 10.1038/nature06601


  • 加载中
    1. [1]

      Pei Li Yuenan Zheng Zhankai Liu An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012

    2. [2]

      Jiahui YUJixian DONGYutong ZHAOFuping ZHAOBo GEXipeng PUDafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1

    3. [3]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    4. [4]

      Bing ShenTongwei YuanWenshuang ZhangYang ChenJiaqiang Xu . Complex shell Fe-ZnO derived from ZIF-8 as high-quality acetone MEMS sensor. Chinese Chemical Letters, 2024, 35(11): 109490-. doi: 10.1016/j.cclet.2024.109490

    5. [5]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    6. [6]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    7. [7]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    8. [8]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    9. [9]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    10. [10]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    11. [11]

      Lubing Qin Fang Sun Meiyin Li Hao Fan Likai Wang Qing Tang Chundong Wang Zhenghua Tang . 原子精确的(AgPd)27团簇用于硝酸盐电还原制氨:一种配体诱导策略来调控金属核. Acta Physico-Chimica Sinica, 2025, 41(1): 2403008-. doi: 10.3866/PKU.WHXB202403008

    12. [12]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    13. [13]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    14. [14]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    15. [15]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    16. [16]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    17. [17]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    18. [18]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    19. [19]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    20. [20]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

Metrics
  • PDF Downloads(1416)
  • Abstract views(3317)
  • HTML views(22)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return