Citation: ZHANG Zhu-Qing. Folding Mechanism of De novo Designed Proteins[J]. Acta Physico-Chimica Sinica, ;2012, 28(10): 2381-2389. doi: 10.3866/PKU.WHXB201209144 shu

Folding Mechanism of De novo Designed Proteins

  • Received Date: 24 August 2012
    Available Online: 14 September 2012

    Fund Project: 中国科学院研究生院院长基金B(Y15102GN00) (Y15102GN00)北京分子科学国家实验室(筹)开放基金(Y15301P1A8)资助 (筹)开放基金(Y15301P1A8)

  • Protein de novo design and protein folding are two different means to investigate“sequencestructure- function”relationship of proteins, which is one of the most important focuses in structural biology. The successful achievements in protein de novo design indicate the understanding accuracy of the knowledge in protein structure and interaction, while most of those designed proteins show different folding kinetic features from nature occurring proteins, which implies that there are still many challenges to the aim of getting them to play expected biological function. In this review, the status of research and development for protein de novo design, as well as the study progress of protein folding in experimental, theoretical and simulation aspects, have been introduced. Further, the investigations of folding mechanism of de novo designed proteins have been reviewed, and the new clue has been proposed that systematically investigation of the essence of different folding mechanism between the two types of protein would help to provide useful insight for more efficient protein rotational design.

  • 加载中
    1. [1]

      (1) Anfinsen, C. B.; Haber, E.; Sela, M.; White, F. H., Jr. Proc. Natl. Acad. Sci. U. S. A. 1961, 47, 1309. doi: 10.1073/pnas.47.9.1309

    2. [2]

      (2) Anfinsen, C. B. Science 1973, 181, 223. doi: 10.1126/science.181.4096.223

    3. [3]

      (3) Berman, H. M.;Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.;Weissig, H.; Shindyalov, I. N.; Bourne, P. E. Nucleic Acids Res. 2000, 28, 235. doi: 10.1093/nar/28.1.235

    4. [4]

      (4) Uversky, V. N. Protein Sci. 2002, 11, 739. doi: 10.1110/ps.4210102

    5. [5]

      (5) Huang, Y. Q.; Liu, Z. R. Acta Phys. -Chim. Sin. 2010, 26, 2061.[黄永棋, 刘志荣. 物理化学学报, 2010, 26, 2061.]

    6. [6]

      (6) Moult, J.; Pedersen, J. T.; Judson, R.; Fidelis, K. Proteins 1995,23, R2.

    7. [7]

      (7) Minton, A. P. Curr. Opin. Struct. Biol. 2000, 10, 34. doi: 10.1016/S0959-440X(99)00045-7

    8. [8]

      (8) Jackson, S. E.; Fersht, A. R. Biochemistry 1991, 30, 10428. doi: 10.1021/bi00107a010

    9. [9]

      (9) Leopold, P. E.; Montal, M.; Onuchic, J. N. Proc. Natl. Acad. Sci. U. S. A. 1992, 89, 8721. doi: 10.1073/pnas.89.18.8721

    10. [10]

      (10) Dill, K. A.; Chan, H. S. Nat. Struct. Biol. 1997, 4, 10. doi: 10.1038/nsb0197-10

    11. [11]

      (11) Duan, Y.; Kollman, P. A. Science 1998, 282, 740. doi: 10.1126/science.282.5389.740

    12. [12]

      (12) Shaw, D. E.; Maragakis, P.; Lindorff-Larsen, K.; Piana, S.; Dror,R. O.; Eastwood, M. P.; Bank, J. A.; Jumper, J. M.; Salmon, J.K.; Shan, Y.;Wriggers,W. Science 2010, 330, 341. doi: 10.1126/science.1187409

    13. [13]

      (13) Lindorff-Larse, K.; Piana, S.; Dror, R. O.; Shaw, D. E. Science2011, 334, 517. doi: 10.1126/science.1208351

    14. [14]

      (14) Shortle, D.; Dimaio, D.; Nathans, D. Annu. Rev. Genet. 1981,15, 265. doi: 10.1146/annurev.ge.15.120181.001405

    15. [15]

      (15) Leatherbarrow, R. J.; Fersht, A. R. Protein Eng. 1986, 1, 7. doi: 10.1093/protein/1.1.7

    16. [16]

      (16) Ho, S. P.; DeGrado,W. F. J. Am. Chem. Soc. 1987, 109, 6751.doi: 10.1021/ja00256a032

    17. [17]

      (17) Ramirez-Alvarado, M.; Blanco, F. J.; Serrano, L. Nat. Struct. Biol. 1996, 3, 604. doi: 10.1038/nsb0796-604

    18. [18]

      (18) Floudas, C. A. Biotechnol. Bioeng. 2007, 97, 207. doi: 10.1002/bit.21411

    19. [19]

      (19) Zhang, Y. Curr. Opin. Struct. Biol. 2008, 18, 342. doi: 10.1016/j.sbi.2008.02.004

    20. [20]

      (20) Floudas, C. A.; Fung, H. K.; McAllister, S. R.; Monnigmann,M.; Rajgaria, R. Chem. Eng. Sci. 2006, 61, 966.

    21. [21]

      (21) Shakhnovich, E. Chem. Rev. 2006, 106, 1559. doi: 10.1021/cr040425u

    22. [22]

      (22) Dill, K. A.; Ozkan, S. B.; Shell, M. S.; Thomas, R.W. Annu. Rev. Biophys. 2008, 37, 289. doi: 10.1146/annurev.biophys.37.092707.153558

    23. [23]

      (23) Thirumalai, D.; O'Brien E. P.; Morrison, G.; Hyeon, C. Annu. Rev. Biophys. 2010, 39, 159. doi: 10.1146/annurev-biophys-051309-103835

    24. [24]

      (24) Butterfoss, G. L.; Kuhlman, B. Annu. Rev. Biophys. Biomol. Struct. 2006, 35, 49. doi: 10.1146/annurev.biohhys.35.040405.102046

    25. [25]

      (25) Pantazes, R. J.; Grisewood, M. J.; Maranas, C. D. Curr. Opin. Struct. Biol. 2011, 21, 467. doi: 10.1016/j.sbi.2011.04.005

    26. [26]

      (26) Lai, L. H. Structure Prediction and Molecular Design of Proteins; Peking University Press: Beijing, 1993. [来鲁华.蛋白质的结构预测与分子设计. 北京: 北京大学出版社,1993.]

    27. [27]

      (27) Chou, P. Y.; Fasman, G. D. Biochemistry 1974, 13, 222. doi: 10.1021/bi00699a002

    28. [28]

      (28) Richardson, J. S.; Richardson, D. C. Science 1988, 240, 1648.doi: 10.1126/science.3381086

    29. [29]

      (29) Kumar, S.; Bansal, M. Proteins 1998, 31, 460. doi: 10.1002/(SICI)1097-0134(19980601)31:4<460::AID-PROT12>3.0.CO;2-D

    30. [30]

      (30) liaei, B.; Minuchehr, Z. FEBS Lett. 2003, 537, 121. doi: 10.1016/S0014-5793(03)00105-4

    31. [31]

      (31) Fonseca, N. A.; Camacho, R.; Magalhaes, A. L. Proteins 2008,70, 188.

    32. [32]

      (32) Qi, Y. F.; Liang, H. H.; Han, X. F.; Lai, L. L. Protein Pept. Lett.2012, 19, 345. doi: 10.2174/092986612799363118

    33. [33]

      (33) Ho, S. P.; DeGrado,W. F. J. Am. Chem. Soc. 1987, 109, 6751.doi: 10.1021/ja00256a032

    34. [34]

      (34) Hecht, M. H.; Richardson, J. S.; Richardson, D. C.; Ogden, R.C. Science 1990, 249, 884. doi: 10.1126/science.2392678

    35. [35]

      (35) Fezoui, Y.;Weaver, D. L.; Osterhout, J. J. Proc. Natl. Acad. Sci. U. S. A. 1994, 91, 3675. doi: 10.1073/pnas.91.9.3675

    36. [36]

      (36) Bryson, J.W.; Desjarlais, J. R.; Handel, T. M.; DeGrado,W. F.Protein Sci. 1998, 7, 1404. doi: 10.1002/pro.5560070617

    37. [37]

      (37) Moser, R.; Thomas, R. M.; Gutte, B. FEBS Lett. 1983, 157,247. doi: 10.1016/0014-5793(83)80555-9

    38. [38]

      (38) Blanco, F. J.; Jimenez, M. A.; Herranz, J.; Rico, M.; Santoro, J.;Nieto, J. L. J. Am. Chem. Soc. 1993, 115, 5887. doi: 10.1021/ja00066a092

    39. [39]

      (39) Blanco, F. J.; Rivas, G.; Serrano, L. Nat. Struct. Biol. 1994, 1,584. doi: 10.1038/nsb0994-584

    40. [40]

      (40) Ramirez-Alvarado, M.; Blanco, F. J.; Serrano, L. Nat. Struct. Biol. 1996, 3, 604. doi: 10.1038/nsb0796-604

    41. [41]

      (41) Kortemme, T.; Ramirez-Alvarado, M.; Serrano, L. Science1998, 281, 253. doi: 10.1126/science.281.5374.253

    42. [42]

      (42) Carulla, N.;Woodward, C.; Barany, G. Protein. Sci. 2002, 11,1539. doi: 10.1110/ps.4440102

    43. [43]

      (43) Dahiyat, B. I.; Mayo, S. L. Science 1997, 278, 82. doi: 10.1126/science.278.5335.82

    44. [44]

      (44) Riddle, D. S.; Santia , J. V.; Bray-Hall, S. T.; Doshi, N.;Grantcharova, V. P.; Yi, Q.; Baker, D. Nat. Struct. Biol. 1997, 4,805. doi: 10.1038/nsb1097-805

    45. [45]

      (45) Kim, D. E.; Gu, H.; Baker, D. Proc. Natl. Acad. Sci. U. S. A.1998, 95, 4982. doi: 10.1073/pnas.95.9.4982

    46. [46]

      (46) Dantas, G.; Kuhlman, B.; Callender, D.;Wong, M.; Baker, D.J. Mol. Biol. 2003, 332, 449. doi: 10.1016/S0022-2836(03)00888-X

    47. [47]

      (47) Kuhlman, B.; Dantas, G.; Ireton, G. C.; Varani, G.; Stoddard, B.L.; Baker, D. Science 2003, 302, 1364. doi: 10.1126/science.1089427

    48. [48]

      (48) Liang, H.; Chen, H.; Fan, K.;Wei, P.; Guo, X.; Jin, C.; Zeng, C.;Tang, C.; Lai, L. Angew. Chem. Int. Edit. 2009, 48, 3301. doi: 10.1002/anie.200805476

    49. [49]

      (49) Zhu, C.; Zhang, C.; Liang, H.; Lai, L. Protein & Cell 2011, 2,1006. doi: 10.1007/s13238-011-1121-3

    50. [50]

      (50) Samish, I.; MacDermaid, M.; Perez-Aguilar, J. M.; Saven, J. G.Annu. Rev. Phys. Chem. 2011, 62, 129. doi: 10.1146/annurevphyschem-032210-103509

    51. [51]

      (51) Li, H.; Helling, R.; Tang, C.;Wingreen, N. Science 1996, 273,666. doi: 10.1126/science.273.5275.666

    52. [52]

      (52) Saven, J. G. Chem. Rev. 2011, 101, 3113.

    53. [53]

      (53) Hellinga, H.W. Proc. Natl. Acad. Sci. U. S. A. 1997, 94, 10015.doi: 10.1073/pnas.94.19.10015

    54. [54]

      (54) Zhang, C. S.; Lai, L. H. Biochem. Soc. Trans. 2011, 39, 1382.doi: 10.1042/BST0391382

    55. [55]

      (55) Zhang, C. S.; Lai, L. H. Proteins 2012, 80, 1078. doi: 10.1002/prot.24009

    56. [56]

      (56) Robertson, D. E.; Farid, R. S.; Moser, C. C.; Urbauer, J. L.;Mulholland, S. E.; Pidikiti, R.; Lear, J. D.;Wand, A. J.;DeGrado,W. F.; Dutton, P. L. Nature 1994, 368, 425. doi: 10.1038/368425a0

    57. [57]

      (57) Reynolds, K. A.; Hanes, M. S.; Thomson, J. M.; Antczak, A. J.;Berger, J. M.; Bonomo, R. A.; Kirsch, J. F.; Handel, T. M.J. Mol. Biol. 2008, 382, 1265. doi: 10.1016/j.jmb.2008.05.051

    58. [58]

      (58) Liu, S.; Zhu, X.; Liang, H.; Cao, A.; Chang, Z.; Lai, L. Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 5330. doi: 10.1073/pnas.0606198104

    59. [59]

      (59) Bai, H. J.; Lai, L. H. Acta Phys. -Chim. Sin. 2010, 26, 1988.[白红军, 来鲁华. 物理化学学报, 2010, 26, 1988.] doi: 10.3866/PKU.WHXB20100725

    60. [60]

      (60) Jiang, L.; Althoff, E. A.; Clemente, F. R.; Doyle, L.;Rothlisberger, D.; Zanghellini, A.; Gallaher, J. L.; Betker, J. L.;Tanaka, F.; Barbas, C. F., III; Hilvert, D.; Houk, K. N.;Stoddard, B. L.; Baker, D. Science 2008, 319, 1387. doi: 10.1126/science.1152692

    61. [61]

      (61) Stefani, M.; Dobson, C. M. J. Mol. Med. 2003, 81, 678. doi: 10.1007/s00109-003-0464-5

    62. [62]

      (62) Levinthal, C. J. Chem. Phys. 1968, 65, 44.

    63. [63]

      (63) Viguera, A. R.; Martinez, J. C.; Filimonov, V. V.; Mateo, P. L.;Serrano, L. Biochemistry 1994, 33, 2142. doi: 10.1021/bi00174a022

    64. [64]

      (64) Otzen, D. E.; Kristensen, O.; Proctor, M.; Oliveberg, M.Biochemistry 1999, 38, 6499. doi: 10.1021/bi982819j

    65. [65]

      (65) Plaxco, K.W.; Baker, D. Proc. Natl. Acad. Sci. U. S. A. 1998,95, 13591. doi: 10.1073/pnas.95.23.13591

    66. [66]

      (66) Taverna, D. M.; ldstein, R. A. Proteins 2002, 46, 105. doi: 10.1002/prot.10016

    67. [67]

      (67) Matouschek, A.; Kellis, J. T.; Serrano, L.; Fersht, A. R. Nature1989, 340, 122. doi: 10.1038/340122a0

    68. [68]

      (68) Fersht, A. R.; Matouschek, A.; Serrano, L. J. Mol. Biol. 1992,224, 771. doi: 10.1016/0022-2836(92)90561-W

    69. [69]

      (69) Scaloni, F.; Federici, L.; Brunori, M.; Gianni, S. Proc. Natl. Acad. Sci. U. S. A. 2010, 95, 4982.

    70. [70]

      (70) Morris, E. R.; Searle, M. S. Curr. Protoc. Protein. Sci. 2012, 28,Unit 28.2.1.

    71. [71]

      (71) mez-Hens, A.; Perez-Bendito, D. Anal. Chim. Acta 1991,242, 147. doi: 10.1016/0003-2670(91)87060-K

    72. [72]

      (72) Bai, Y.W.; Sosnick, T. R.; Mayne, L.; Englander, S.W. Science1995, 269, 192. doi: 10.1126/science.7618079

    73. [73]

      (73) Gai, F.; Du, D.; Xu, Y. Methods. Mol. Biol. 2007, 350, 1.

    74. [74]

      (74) Borgia, A.;Williams, P. M.; Clarke, J. Annu. Rev. Biochem.2008, 77, 101. doi: 10.1146/annurev.biochem.77.060706.093102

    75. [75]

      (75) Chung, H. S.; McHale, K.; Louis, J. M.; Eaton,W. A. Science2012, 335, 981. doi: 10.1126/science.1215768

    76. [76]

      (76) Onuchic, J. N.; Luthey-Schulten, Z.;Wolynes, P. G. Annu. Rev. Phys. Chem. 1997, 48, 545. doi: 10.1146/annurev.physchem.48.1.545

    77. [77]

      (77) Gsponer, J.; Vendruscolo, M. Protein Pept. Lett. 2006, 13, 287.doi: 10.2174/092986606775338407

    78. [78]

      (78) Dill, K. A. Biochemistry 1985, 24, 1501. doi: 10.1021/bi00327a032

    79. [79]

      (79) Clementi, C. Curr. Opin. Struct. Biol. 2008, 18, 10. doi: 10.1016/j.sbi.2007.10.005

    80. [80]

      (80) Ueeda, Y.; Taketomi, H.; Gō, N. Biopolymers 1978, 17, 1531.doi: 10.1002/bip.1978.360170612

    81. [81]

      (81) Plaxco, K.W.; Simons, K. T.; Baker, D. J. Mol. Biol. 1998, 277,985. doi: 10.1006/jmbi.1998.1645

    82. [82]

      (82) Clementi, C.; Nymeyer, H.; Onuchic, J. N. J. Mol. Biol. 2000,298, 937. doi: 10.1006/jmbi.2000.3693

    83. [83]

      (83) Hills, R. D., Jr.; Brooks, C. L., III. Int. J. Mol. Sci. 2009, 10,889. doi: 10.3390/ijms10030889

    84. [84]

      (84) Chan, H. S.; Zhang, Z.;Wallin, S.; Liu, Z. Annu. Rev. Phys. Chem. 2011, 62, 301. doi: 10.1146/annurev-physchem-032210-103405

    85. [85]

      (85) Cho, S. S.; Levy, Y.;Wolynes, P. G. Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 434. doi: 10.1073/pnas.0810218105

    86. [86]

      (86) Cho, S. S.;Weinkam, P.;Wolynes, P. G. Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 118. doi: 10.1073/pnas.0709376104

    87. [87]

      (87) Zuo, G.;Wang, J.;Wang,W. Proteins 2006, 63, 165. doi: 10.1002/prot.20857

    88. [88]

      (88) Badasyan, A.; Liu, Z.; Chan, H. S. J. Mol. Biol. 2008, 384, 512.doi: 10.1016/j.jmb.2008.09.023

    89. [89]

      (89) Liu, Z.; Chan, H. S. J. Mol. Biol. 2005, 349, 872. doi: 10.1016/j.jmb.2005.03.084

    90. [90]

      (90) Ferguson, A.; Liu, Z.; Chan, H. S. J. Mol. Biol. 2009, 389, 619.doi: 10.1016/j.jmb.2009.04.011

    91. [91]

      (91) Zarrine-Afsar, A.;Wallin, S.; Neculai, A. M.; Neudecker, P.;Howell, P. L.; Davidson, A. R.; Chan, H. S. Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 9999. doi: 10.1073/pnas.0801874105

    92. [92]

      (92) Zarrine-Afsar, A.; Zhang, Z.; Schweiker, K. L.; Makhatadze, G.I.; Davidson, A. R.; Chan, H. S. Proteins 2012, 80, 858. doi: 10.1002/prot.23243

    93. [93]

      (93) Su, J. G.; Chen,W. Z.;Wang, C. X. Proteins 2010, 78, 2157.

    94. [94]

      (94) Azia, A.; Levy, Y. J. Mol. Biol. 2009, 393, 527. doi: 10.1016/j.jmb.2009.08.010

    95. [95]

      (95) Liu, Z.; Reddy, G.; O'Brien, E. P.; Thirumalai, D. Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 7787. doi: 10.1073/pnas.1019500108

    96. [96]

      (96) Liu, Z.; Reddy, G.; Thirumalai, D. J. Phys. Chem. B 2012, 116,6707. doi: 10.1021/jp211941b

    97. [97]

      (97) Wu, L.; Li,W.; Liu, F.; Zhang, J.;Wang, J.;Wang,W. J. Chem. Phys. 2009, 131, 065105. doi: 10.1063/1.3200952

    98. [98]

      (98) Wu, L.; Zhang, J.;Wang, J.; Li,W. F.;Wang,W. Phys. Rev. E2007, 75, 031914. doi: 10.1103/PhysRevE.75.031914

    99. [99]

      (99) Wu, L.; Zhang, J.; Qin, M.; Liu, F.;Wang,W. J. Chem. Phys.2008, 128, 235103. doi: 10.1063/1.2943202

    100. [100]

      (100) McCammon, J. A.; Gelin, B. R.; Karplus, M. Nature 1977,267, 585. doi: 10.1038/267585a0

    101. [101]

      (101) Zhu, Y.; Alonso, D. O.; Maki, K.; Huang, C. Y.; Lahr, S. J.;Daggett, V.; Roder, H.; DeGrado,W. F.; Gai, F. Proc. Natl. Acad. Sci. U. S. A. 2003, 100, 15486. doi: 10.1073/pnas.2136623100

    102. [102]

      (102) Zhu, Y.; Fu, X.;Wang, T.; Tamura, A.; Takada, S.; Saven, J. G.;Gai, F. Chem. Phys. 2004, 307, 99. doi: 10.1016/j.chemphys.2004.05.008

    103. [103]

      (103) Wang, T.; Zhu, Y.; Gai, F. J. Phys. Chem. B 2004, 108, 3694.doi: 10.1021/jp049652q

    104. [104]

      (104) Gillespie, B.; Vu, D. M.; Shah, P. S.; Marshall, S. A.; Dyer, R.B.; Mayo, S. L.; Plaxco, K.W. J. Mol. Biol. 2003, 330, 813.doi: 10.1016/S0022-2836(03)00616-8

    105. [105]

      (105) Scalley-Kim, M.; Baker, D. J. Mol. Biol. 2004, 338, 573. doi: 10.1016/j.jmb.2004.02.055

    106. [106]

      (106) Sadqi, M.; de Alba, E.; Perez-Jimenez, R.; Sanchez-Ruiz, J.M.; Muñoz, V. Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 4127.doi: 10.1073/pnas.0812108106

    107. [107]

      (107) Watters, A. L.; Deka, P.; Corrent, C.; Callender, D.; Varani, G.;Sosnick, T.; Baker, D. Cell 2007, 128, 613. doi: 10.1016/j.cell.2006.12.042

    108. [108]

      (108) Zhang, Z.; Chan, H. S. Biophys. J. 2009, 96, L25.

    109. [109]

      (109) Zhang, Z.; Chan, H. S. Proc. Natl. Acad. Sci. U. S. A. 2010,107, 2920. doi: 10.1073/pnas.0911844107

    110. [110]

      (110) Qi, Y.; Huang, Y.; Liang, H.; Liu, Z.; Lai, L. Biophys. J. 2010,98, 321. doi: 10.1016/j.bpj.2009.10.018


  • 加载中
    1. [1]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    2. [2]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    3. [3]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    4. [4]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    5. [5]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    6. [6]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    7. [7]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    8. [8]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    9. [9]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    10. [10]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    11. [11]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    12. [12]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    13. [13]

      Wanqun Hu Pingping Zhu Yuan Zheng Wanqun Zhang Wei Shao Hong Wu Qiang Zhou Kaiping Yang Xiang Sheng . Design and Practice of Ideological and Political Case Study in Instrumental Analysis Experiment Course: the Extraction and Structural Identification of Artemisinin. University Chemistry, 2024, 39(2): 203-207. doi: 10.3866/PKU.DXHX202310062

    14. [14]

      Xuan Zhou Yi Fan Zhuoqi Jiang Zhipeng Li Guowen Yuan Laiying Zhang Xu Hou . Liquid Gating Mechanism and Basic Properties Characterization: a New Experimental Design for Interface and Surface Properties in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 113-120. doi: 10.12461/PKU.DXHX202407111

    15. [15]

      Li Jiang Changzheng Chen Yang Su Hao Song Yanmao Dong Yan Yuan Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002

    16. [16]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

    17. [17]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

    18. [18]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    19. [19]

      Ruming Yuan Pingping Wu Laiying Zhang Xiaoming Xu Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057

    20. [20]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

Metrics
  • PDF Downloads(659)
  • Abstract views(1977)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return