Citation:
GUO Yan, FU Ying-Qiang, SUN Yin-Lu, CHEN Tian-Nan, ZHAO Jian-Wei. Theoretical Simulation on the Chromatographic System Based on the Random Diffusion of the Separating Particles[J]. Acta Physico-Chimica Sinica
doi:
10.3866/PKU.WHXB201209141
-
In order to dynamically track the trajectory of diffusing molecules in a chromatography system, and to thoroughly understand its influence on chromatographic dynamics, we have developed software based on the framework of random walks in a confined space, with which the diffusion processes have been simulated. The influence of the filling rates, the form of the stationary phase, and the column length of a packed column on the chromatographic dynamics have been discussed based on these simulation results. It was concluded that shorter column lengths and larger filling rates result in a higher column efficiency. The particles to be separated normally show basic diffusion characteristics in the confined space. However, their flow behavior will increase with increasing external pressure. The simulation results indicate that the influence of the filling rate of the stationary phase and the column length on chromatographic dynamic behavior is similar to those seen in experiment, whereas the form of the stationary phase only has a slight effect because of the same close-packed barrier arrangement. This simulation method we proposed has some significance for the development of high-performance chromatography and novel separation technologies.
-
-
-
[1]
(1) Grill, L.; Dyer, M.; Lafferentz, L.; Persson, M.; Peters, M. V.;Hecht, S. Nat. Nanotechnol. 2007, 2, 687. doi: 10.1038/nnano.2007.346
-
[2]
(2) Yariv, E.; Ben-Dov, G.; Dorfman, K. D. Europhys. Lett. 2005,71 (6), 1008. doi: 10.1209/epl/i2005-10171-6
-
[3]
(3) Corma, A.; Díaz-Cabañas, M. J.; Jordá, J. L.; Martínez, C.;Moliner, M. Nature 2006, 443, 842. doi: 10.1038/nature05238
-
[4]
(4) Ridgway, D.; Broderick, G.; Lopez-Campistrous, A.; Ruaini,M.;Winter, P.; Hamilton, M.; Boulanger, P.; Kovalenko, A.;Ellison, M. J. Biophys. J. 2008, 94 (10), 3748. doi: 10.1529/biophysj.107.116053
-
[5]
(5) Persson, A. I.; Larsson, M.W.; Stenström, S.; Ohlsson, B. J.;Samuelson, L.;Wallenberg, L. R. Nat. Mater. 2004, 3, 677. doi: 10.1038/nmat1220
-
[6]
(6) Chou, C. F.; Bakajin, O.; Turner, S.W. P.; Duke, T. A. J.; Chan,S. S.; Cox, E. C.; Craighead, H. G.; Austin, R. H. Proc. Natl. Acad. Sci. U. S. A. 1999, 96 (23), 13762.
-
[7]
(7) Wang, F. Y.; Liu, Y. H.; Yin, X.;Wang, N.;Wang, D. X.; Gao, Y.J.; Zhao, J.W. J. Appl. Phys. 2010, 108, 074311. doi: 10.1063/1.3477323
-
[8]
(8) Liu, Y. H.; Zhao, J.W.;Wang, F. Y. Phys. Rev. B 2009, 80,1154117.
-
[9]
(9) Rao, P. S. C.; Jessup, R. E.; Addiscott, T. M. Soil Sci. 1982, 133,342. doi: 10.1097/00010694-198206000-00002
-
[10]
(10) Safford, R. E.; Bassingthwaighte, E. A.; Bassingthwaighte, J. B.J. Gen. Physiol. 1978, 72, 513. doi: 10.1085/jgp.72.4.513
-
[11]
(11) Santamaria, F.;Wils, S.; De Schutter, E.; Augustine, G. J.Neuron 2006, 52, 635. doi: 10.1016/j.neuron.2006.10.025
-
[12]
(12) Saltzman,W. M. Drug Delivery: Engineering Principles for Drug Therapy; Oxford University Press: New York, 2001; pp1-30.
-
[13]
(13) Zubarev, E. R.; Pralle, M. U.; Li, L.; Stupp, S. I. Science 1999,283, 523. doi: 10.1126/science.283.5401.523
-
[14]
(14) McNair, H. M.; Miller, J. M. Basic Gas Chromatography; JohnWiley & Sons: Hoboken, New Jersey, 2009; pp 1-267.
-
[15]
(15) Poole, C. F. The Essence of Chromatography; Elsevier ScienceB. V.: Amsterdam, the Netherlands, 2003; pp 80-86.
-
[16]
(16) Heftmann, E. Fundamentals and Applications of Chromatography and Related Differential Migration Methods ,in Chromatography; Elsevier Science B. V.: Amsterdam, theNetherlands, 2004; pp 319-364.
-
[17]
(17) Wick, C. D.; Siepmann, J. I.; Schure, M. R. Anal. Chem. 2002,74, 3518. doi: 10.1021/ac0200116
-
[18]
(18) Makrodimitris, K.; Fernandez, E. J.;Woolf, T. B.; O'Connell, J.P. Anal. Chem. 2005, 77, 1243. doi: 10.1021/ac048812r
-
[19]
(19) Turowski, M.; Yamakawa, N.; Meller, J.; Kimata, K.; Ikegami,T.; Hosoya, K.; Tanaka, N.; Thornton, E. R. J. Am. Chem. Soc2003, 125, 13836. doi: 10.1021/ja036006g
-
[20]
(20) Zhang, L.; Zhao, G.; Sun, Y. J. Phys. Chem. B 2010, 114, 2203.doi: 10.1021/jp903852c
-
[21]
(21) Dimartino, S.; Boi, C.; Sarti, G. C. J. Chromatogr. A 2011, 1218,1677. doi: 10.1016/j.chroma.2010.11.056
-
[22]
(22) Fu, Y.; Chen, L.; Ke, J.; Gao, Y.; Zhang, S.; Li, S.; Chen, T.;Zhao, J. Mol. Simul. 2012, 38 (6), 491. doi: 10.1080/08927022.2011.649427
-
[23]
(23) Ke, J. Y.; Fu, Y. Q.; Chen, L. L.; Chen, T. N.; Zhang, S. J.;Wang, H. B.; Zhao, J.W. J. Fudan Univ. 2012, 51 (2), 251.[柯佳颖, 傅应强, 陈莉莉, 陈天南, 张世界, 王洪波, 赵健伟.复旦大学学报, 2012, 51 (2), 251.]
-
[24]
(24) van Deemter, J. J.; Zuiderweg, F. J.; Klinkenberg, A. Chem. Eng. Sci. 1956, 5, 271. doi: 10.1016/0009-2509(56)80003-1
-
[25]
(25) Schwander, J.; Stauffer, B.; Sigg, A. Ann. Glac. 1988, 10, 141.
-
[26]
(26) McAfee, M.; Lindström, J.; Johansson,W. J. Soil. Sci. 1989, 40 (4), 707. doi: 10.1111/ejs.1989.40.issue-4
-
[27]
(27) Saxton, M. J.; Jacobson, K. Annu. Rev. Biophys. Biomol. Struct.1997, 26, 373. doi: 10.1146/annurev.biophys.26.1.373
-
[28]
(28) Sander, L. C.;Wise, S. A. Anal. Chem. 1995, 67 (18), 3284. doi: 10.1021/ac00114a027
-
[29]
(29) Welsch, T.; Michalke, D. J. Chromatogr. A 2003, 1000, 935. doi: 10.1016/S0021-9673(03)00503-X
-
[30]
(30) Keulemans, A. L. M.; Kwantes, A. Vapour Phase Chromatography; Academic Press: New York, 1957; p 15.
-
[1]
-
-
-
[1]
Fan Wu , Wenchang Tian , Jin Liu , Qiuting Zhang , YanHui Zhong , Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, doi: 10.12461/PKU.DXHX202403031
-
[2]
Siming Bian , Sijie Luo , Junjie Ou . Application of van Deemter Equation in Instrumental Analysis Teaching: A New Type of Core-Shell Stationary Phase. University Chemistry, doi: 10.12461/PKU.DXHX202406087
-
[3]
Yaping Li , Sai An , Aiqing Cao , Shilong Li , Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, doi: 10.12461/PKU.DXHX202405185
-
[4]
Pingping Zhu , Yongjun Xie , Yuanping Yi , Yu Huang , Qiang Zhou , Shiyan Xiao , Haiyang Yang , Pingsheng He . Excavation and Extraction of Ideological and Political Elements for the Virtual Simulation Experiments at Molecular Level: Taking the Project “the Simulation and Computation of Conformation, Morphology and Dimensions of Polymer Chains” as an Example. University Chemistry, doi: 10.3866/PKU.DXHX202309063
-
[5]
Xiaochen Zhang , Fei Yu , Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202311026
-
[6]
Jingming Li , Bowen Ding , Nan Li , Nurgul . Application of Comparative Teaching Method in Experimental Project Design of Instrumental Analysis Course: A Case Study in Chromatography Experiment Teaching. University Chemistry, doi: 10.3866/PKU.DXHX202312078
-
[7]
Congying Lu , Fei Zhong , Zhenyu Yuan , Shuaibing Li , Jiayao Li , Jiewen Liu , Xianyang Hu , Liqun Sun , Rui Li , Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, doi: 10.3866/PKU.DXHX202308097
-
[8]
Xintian Xie , Sicong Ma , Yefei Li , Cheng Shang , Zhipan Liu . Application of Machine Learning Potential-based Theoretical Simulations in Undergraduate Teaching Laboratory Course Design. University Chemistry, doi: 10.12461/PKU.DXHX202405164
-
[9]
Zunxiang Zeng , Yuling Hu , Yufei Hu , Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, doi: 10.3866/PKU.DXHX202309069
-
[10]
Yanhui Zhong , Ran Wang , Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, doi: 10.12461/PKU.DXHX202402017
-
[11]
Donghui PAN , Yuping XU , Xinyu WANG , Lizhen WANG , Junjie YAN , Dongjian SHI , Min YANG , Mingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20230468
-
[12]
Tianqi Bai , Kun Huang , Fachen Liu , Ruochen Shi , Wencai Ren , Songfeng Pei , Peng Gao , Zhongfan Liu . 石墨烯厚膜热扩散系数与微观结构的关系. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202404024
-
[13]
Ruoxi Sun , Yiqian Xu , Shaoru Rong , Chunmiao Han , Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, doi: 10.3866/PKU.DXHX202310001
-
[14]
Zhicheng JU , Wenxuan FU , Baoyan WANG , Ao LUO , Jiangmin JIANG , Yueli SHI , Yongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240363
-
[15]
Yaping ZHANG , Tongchen WU , Yun ZHENG , Bizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240256
-
[16]
Wei HE , Jing XI , Tianpei HE , Na CHEN , Quan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240364
-
[17]
Jin Tong , Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, doi: 10.3866/PKU.DXHX202308113
-
[18]
Zehua Zhang , Haitao Yu , Yanyu Qi . 多重共振TADF分子的设计策略. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202309042
-
[19]
Yong Shu , Xing Chen , Sai Duan , Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, doi: 10.3866/PKU.DXHX202310102
-
[20]
Laiying Zhang , Yinghuan Wu , Yazi Yu , Yecheng Xu , Haojie Zhang , Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, doi: 10.3866/PKU.DXHX202310126
-
[1]
Metrics
- PDF Downloads(657)
- Abstract views(1597)
- HTML views(1)