Citation: WANG Yu, CHEN Jing, LIAO Qing, SUN Wei, LI Jianlong, ZHANG Jianping, WU Kai. Bifilar Helix-Like Nanobelt of Single Crystalline Zn2SnO4 Fabricated by Aluminothermal Reaction Approach[J]. Acta Physico-Chimica Sinica, ;2012, 28(10): 2500-2506. doi: 10.3866/PKU.WHXB201209113 shu

Bifilar Helix-Like Nanobelt of Single Crystalline Zn2SnO4 Fabricated by Aluminothermal Reaction Approach

  • Received Date: 28 August 2012
    Available Online: 11 September 2012

    Fund Project: 国家自然科学基金(20827002, 20911130229) (20827002, 20911130229)国家重点基础研究发展规划项目(973) (2009CB929403, 2011CB808702)资助 (973) (2009CB929403, 2011CB808702)

  • This paper reports the preparation in large quantity of bifilar helix-like nanobelts of single crystalline Zn2SnO4, a face-centered cubic spinel and transparent semiconductor that possesses wide applications in photovoltaic devices and sensors for humidity and combustible gases, by using a unique approach that combines chemical vapor deposition, aluminothermal reaction, vapor-liquid-solid growth, mergence of polar planes, and kinetic control by steady-state turbulent flow. The bifilar helix-like nanobelt was formed by the twisting and merging of two independent Zn2SnO4 nanobelts, as analyzed by scanning electron microscopy, transmission electron microscopy, electron diffraction, X-ray diffraction, Raman spectroscopy, and photoluminescence. It had a periodicity along the axial direction and hence, is actually a super-lattice material. The photoluminescence measurements showed a strong light emission at 326.1 nm from the as-prepared sample with a line width of about 1.5 nm. The combined approach used in this study, in particular its aluminothermal reaction and steady-state turbulent gas flow perturbation steps, may be helpful in preparing other similar materials.

  • 加载中
    1. [1]

      (1) Wang, Z. L. Dekker Encyclopedia of Nanoscience and Nanotechnology 2004, 1773.

    2. [2]

      (2) Chen, J. Y.; Benjamin,W.; Joseph, M.; Xiong, Y. J.; Li, Z. Y.;Xia, Y. N. Nano Lett. 2005, 5, 2058. doi: 10.1021/nl051652u

    3. [3]

      (3) Kuang, Q.; Jiang, Z. Y.; Xie, Z. X.; Lin, S. C.; Lin, Z.W.; Xie,S. Y.; Huang, R. B.; Zheng, L. S. J. Am. Chem. Soc. 2005, 127,11777. doi: 10.1021/ja052259t

    4. [4]

      (4) Benjamin, D. Y.; David, O. Z.; Peter, J. P.; He, R. R.; Yang, P. D.Angew. Chem. Int. Edit. 2006, 45, 420. doi: 10.1002/(ISSN)1521-3773

    5. [5]

      (5) Zhang, H. F.;Wang, C. M.;Wang, L. S. Nano Lett. 2002, 2, 941.doi: 10.1021/nl025667t

    6. [6]

      (6) Zhang, D. Q.; Abdullah, A.; Han, H. G.; Hasan, M.; McIlroy, D.N. Nano Lett. 2003, 3, 983. doi: 10.1021/nl034288c

    7. [7]

      (7) Vardhan, B.; Dai, L. M.; Toshiyuki, O. J. Am. Chem. Soc. 2004,126, 5070. doi: 10.1021/ja031738u

    8. [8]

      (8) Zhang, G. Y.; Jiang, X.;Wang, E. G. Appl. Phys. Lett. 2004, 84,2646. doi: 10.1063/1.1695198

    9. [9]

      (9) Gao, R. P.;Wang, Z. L.; Fan, S. S. J. Phys. Chem. B 2000, 104,1227. doi: 10.1021/jp9937611

    10. [10]

      (10) Tang, Y. H.; Zhang, Y. F.;Wang, N.; Lee, C. S.; Han, X. D.;Bello, I.; Lee, S. T. J. Appl. Phys. 1999, 85, 7981. doi: 10.1063/1.369389

    11. [11]

      (11) Duan, J. H.; Yang, S. G.; Liu, H.W.; ng, J. F.; Huang, H. B.;Zhao, X. N.; Zhang, R.; Du, Y.W. J. Am. Chem. Soc. 2005, 127,6180. doi: 10.1021/ja042748d

    12. [12]

      (12) Yang, R. S.; Ding, Y.;Wang, Z. L. Nano Lett. 2004, 4, 1309.doi: 10.1021/nl049317d

    13. [13]

      (13) Bae, S. Y.; Lee, J. Y.; Jung, H. S.; Park, J. H.; Ahn, J. P. J. Am. Chem. Soc. 2005, 127, 10802. doi: 10.1021/ja0534102

    14. [14]

      (14) Zhan, J. H.; Bando, Y.; Hu, J. Q.; Xu, F. F.; lberg, D. Small2005, 1, 883. doi: 10.1002/(ISSN)1613-6829

    15. [15]

      (15) Zarur, A. J.; Ying, J. Y. Nature 2000, 403, 65. doi: 10.1038/47450

    16. [16]

      (16) Shen, S. C.; Kus, H.; Liya, E. Y.; Sibudjing, K. Adv. Mater.2004, 16, 541. doi: 10.1002/(ISSN)1521-4095

    17. [17]

      (17) Chen, Y. C.; Chang, Y. H.; Tsai, B. S. Mater. Trans. 2004, 45,1684. doi: 10.2320/matertrans.45.1684

    18. [18]

      (18) vander Laaga, N. J.; Snela, M. D.; Magusinb, P. C. M. M.; deWith, G. J. Eur. Cer. Soc. 2004, 24, 2417. doi: 10.1016/j.jeurceramsoc.2003.06.001

    19. [19]

      (19) Lou, Z. D.; Hao, J. H. Thin Solid Films 2004, 450, 334. doi: 10.1016/j.tsf.2003.11.294

    20. [20]

      (20) Zawadzki, M.;Wrzyszcz, J.; Strek,W.; Hreniak, D. J. Alloy. Compd. 2001, 323-324, 279.

    21. [21]

      (21) Yu, J. F.;Wang, F.;Wang, Y.; Gao, H.; Li, J. L.;Wu, K. Chem. Soc. Rev. 2010, 39, 1513. doi: 10.1039/b812787p

    22. [22]

      (22) Wang, Y.;Wu, K. J. Am. Chem. Soc. 2005, 127, 9686. doi: 10.1021/ja0505402

    23. [23]

      (23) Wang, Y.; Liao, Q.; Lei, H.; Zhang, X. P.; Ai, X. C.; Zhang, J. P.;Wu, K. Adv. Mater. 2006, 18, 943. doi: 10.1002/(ISSN)1521-4095

    24. [24]

      (24) Liao, Q.;Wang, Y.; Li, J. L.;Wu, K.; Ai, X. C.; Zhang, J. P.Appl. Phys. Lett. 2007, 91, 041103. doi: 10.1063/1.2759473

    25. [25]

      (25) Palmer, G. B.; Poeppelmeier, K. R. Solid State Sci. 2002, 4, 317.doi: 10.1016/S1293-2558(01)01258-4

    26. [26]

      (26) Coutts, T. J.; Young, D. L.; Li, X.; Mulligan,W. P.;Wu, X.J. Vac. Sci. Technol. A 2000, 18, 2646.

    27. [27]

      (27) Stambolova, I.; Konstantinov, K.; Kovacheva, D.; Peshev, P.;Donchev, T. J. Solid State Chem. 1997, 128, 305. doi: 10.1006/jssc.1996.7174

    28. [28]

      (28) Yamada, Y.; Seno, Y.; Masuoka, Y.; Yamashita, K. Sens. Actua. B-Chem. 1998, 49, 248. doi: 10.1016/S0925-4005(98)00135-X

    29. [29]

      (29) Stambolova, I.; Konstantinov, K.; Khristova, M.; Peshev, P.Phys. Status Solid.-Appl. Res. 1998, 167, R11.

    30. [30]

      (30) Jie, J. S.;Wang, G. Z.; Han, X. H.; Fang, J. P.; Yu, Q. X.; Liao,Y.; Xu, B.;Wang, Q. T.; Hou, J. G. J. Phys. Chem. B 2004, 108,8249. doi: 10.1021/jp049230g

    31. [31]

      (31) Chen, H. Y.;Wang, J. X.; Yu, H. C.; Yang, H. X.; Xie, S. S.; Li,J. Q. J. Phys. Chem. B 2005, 109, 2573. doi: 10.1021/jp046125y

    32. [32]

      (32) Wang, J. X.; Xie, S. S.; Gao, Y.; Yan, X. Q.; Liu, D. F.; Yuan, H.J.; Zhou, Z. P.; Song, L.; Liu, L. F.; Zhou,W. Y.;Wang, E. G.J. Cryst. Growth 2004, 267, 177.

    33. [33]

      (33) Kim, H. S.; Hwang, S. O.; Myung, Y.; Park, J.; Bae, S. Y.; Ahn,J. P. Nano Lett. 2008, 8, 551. doi: 10.1021/nl072829i

    34. [34]

      (34) Yu, J. F.;Wang, Y.;Wen,W.; Yang, D. H.; Huang, B.; Li, J. L.;Wu, K. Adv. Mater. 2010, 22, 1479. doi: 10.1002/adma.200903656

    35. [35]

      (35) Kong, X. Y.; Ding, Y.; Yang, R. S.;Wang, Z. L. Science 2004,303, 1348. doi: 10.1126/science.1092356

    36. [36]

      (36) Gates, B.; Mayers, B.; Cattle, B.; Xia, Y. N. Adv. Funct. Mater.2002, 12, 219. doi: 10.1002/1616-3028(200203)12:3<219::AID-ADFM219>3.0.CO;2-U

    37. [37]

      (37) Joo, J.; Son, J. S.; Kwon, S. G.; Yu, J. H.; Hyeon, T. J. Am. Chem. Soc. 2006, 128, 5632. doi: 10.1021/ja0601686

    38. [38]

      (38) odwin, T. J.; Leppert, V. J.; Risbud, S. H.; Kennedy, I. M.;Lee, H.W. H. Appl. Phys. Lett. 1997, 70, 3122. doi: 10.1063/1.119109

    39. [39]

      (39) Ramyall, P.; Tanaka, S.; Nomura, S.; Riblet, P.; Aoyagi, Y. Appl. Phys. Lett. 1998, 73, 1104. doi: 10.1063/1.122098

    40. [40]

      (40) Hu, P. A.; Liu, Y. Q.; Fu, L.; Cao, L. C.; Zhu, D. B. J. Phys. Chem. B 2004, 108, 936.


  • 加载中
    1. [1]

      Xiaxue Chen Yuxuan Yang Ruolin Yang Yizhu Wang Hongyun Liu . Adjustable Polychromatic Fluorescence: Investigating the Photoluminescent Properties of Copper Nanoclusters. University Chemistry, 2024, 39(9): 328-337. doi: 10.3866/PKU.DXHX202308019

    2. [2]

      Yanting HUANGHua XIANGMei PAN . Construction and application of multi-component systems based on luminous copper nanoclusters. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2075-2090. doi: 10.11862/CJIC.20240196

    3. [3]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    4. [4]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    5. [5]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

    6. [6]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    7. [7]

      Jianjun Liu Xue Yang Chi Zhang Xueyu Zhao Zhiwei Zhang Yongmei Chen Qinghong Xu Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031

    8. [8]

      Dongheng WANGSi LIShuangquan ZANG . Construction of chiral alkynyl silver chains and modulation of chiral optical properties. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 131-140. doi: 10.11862/CJIC.20240379

    9. [9]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    10. [10]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    11. [11]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    12. [12]

      Shuwen SUNGaofeng WANG . Design and synthesis of a Zn(Ⅱ)-based coordination polymer as a fluorescent probe for trace monitoring 2, 4, 6-trinitrophenol. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 753-760. doi: 10.11862/CJIC.20240399

    13. [13]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    14. [14]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    15. [15]

      Qin Li Huihui Zhang Huajun Gu Yuanyuan Cui Ruihua Gao Wei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016

    16. [16]

      Xuewei BACheng CHENGHuaikang ZHANGDeqing ZHANGShuhua LI . Preparation and luminescent performance of Sr1-xZrSi2O7xDy3+ phosphor with high thermal stability. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 357-364. doi: 10.11862/CJIC.20240096

    17. [17]

      Yan ZHAOJiaxu WANGZhonghu LIChangli LIUXingsheng ZHAOHengwei ZHOUXiaokang JIANG . Gd3+-doped Sc2W3O12: Eu3+ red phosphor: Preparation and luminescence performance. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 461-468. doi: 10.11862/CJIC.20240316

    18. [18]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    19. [19]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    20. [20]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

Metrics
  • PDF Downloads(951)
  • Abstract views(1942)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return