Citation: HUANG Yang-Yu, YANG Xiu-Feng, LI Hao-Tian, JI Xiao-Feng, CHENG Hong-Li, ZHAO Yun-Jie, GUO Da-Chuan, LI Lin, LIU Shi-Yong. Protein-RNA Interaction Interface Prediction and Design[J]. Acta Physico-Chimica Sinica, ;2012, 28(10): 2390-2400. doi: 10.3866/PKU.WHXB201209111 shu

Protein-RNA Interaction Interface Prediction and Design

  • Received Date: 23 August 2012
    Available Online: 11 September 2012

    Fund Project: 国家自然科学基金(31100522) (31100522) 国家高技术研究发展计划(2012AA020402) (2012AA020402) 高等学校博士学科点专项科研基金(20110142120038)资助. (20110142120038)

  • RNA-protein interactions play key roles in many biological processes. The three dimensional (3D) structure of protein-RNA complexes can be determined experimentally by structural biologists. The recognition between protein and RNA can be understood from the 3D atomic structure. However, the structure determination of protein-RNA complexes by experimental methods is often difficult and costly, and limited to the binding strength. Thus, the prediction and design of protein-RNA complex structures is important in biological medical research. In this review, we will discuss the recent progress in protein-RNA interface prediction and design, which includes the following aspects: (1) protein-RNA docking and the conformational change on binding; (2) the recognition mechanism of protein-RNA binding; (3) the molecular design based on the protein-RNA interface. Improvement of the protein-RNA docking al rithm will help us annotate a large number of proteins and RNA with unknown function, and molecular design based on macromolecular interactions will be useful in drug design.

  • 加载中
    1. [1]

      (1) Gilbert,W. Nature 1986, 319, 618.

    2. [2]

      (2) Zhang,W.; Ye, K. Q. Chinese Bulletin of Life Sciences 2010, 22,608. [张炜, 叶克穷. 生命科学, 2010, 22, 608.]

    3. [3]

      (3) Zhao, S.; Liu, M. F. Chinese Bulletin of Life Sciences 2010, 22,623. [赵爽, 刘默芳. 生命科学, 2010, 22, 623.]

    4. [4]

      (4) Shao,W.; Fan, Y. J.; Xu, Y. Z. Chinese Bulletin of Life Sciences2010, 22, 711. [邵伟, 樊玉杰, 徐永镇. 生命科学, 2010, 22,711.]

    5. [5]

      (5) Chen, R. S. Sci. China Life Sci. 2010, 22, 594. [陈润生. 生命科学, 2010, 22, 594.]

    6. [6]

      (6) Zheng, L. L.; Qu, L. H. Chinese Bulletin of Life Sciences 2010,40, 294. [郑凌伶, 屈良鹄. 中国科学生命科学, 2010, 40,294.]

    7. [7]

      (7) Liu, M. F.;Wang, E. D. Chinese Bulletin of Life Sciences 2008,20, 178. [刘默芳, 王恩多. 生命科学, 2008, 20, 178.]

    8. [8]

      (8) Licatalosi, D. D.; Mele, A.; Fak, J. J.; Ule, J.; Kayikci, M.; Chi,S.W.; Clark, T. A.; Schweitzer, A. C.; Blume, J. E.;Wang, X.;Darnell, J. C.; Darnell, R. B. Nature 2008, 456, 464. doi: 10.1038/nature07488

    9. [9]

      (9) Yang, J. H.; Li, J. H.; Shao, P.; Zhou, H.; Chen, Y. Q.; Qu, L. H.Nucleic Acids Research 2011, 39, D202.

    10. [10]

      (10) Wu, T.;Wang, J.; Liu, C.; Zhang, Y.; Shi, B.; Zhu, X.; Zhang,Z.; Skogerbo, G.; Chen, L.; Lu, H.; Zhao, Y.; Chen, R. Nucleic Acids Research 2006, 34, D150.

    11. [11]

      (11) Lunde, B. M.; Moore, C.; Varani, G. Nature Reviews. Molecular Cell Biology 2007, 8, 479. doi: 10.1038/nrm2178

    12. [12]

      (12) Clery, A.; Blatter, M.; Allain, F. H. Current Opinion in Structural Biology 2008, 18, 290. doi: 10.1016/j.sbi.2008.04.002

    13. [13]

      (13) Maris, C.; Dominguez, C.; Allain, F. H. The FEBS Journal2005, 272, 2118. doi: 10.1111/j.1742-4658.2005.04653.x

    14. [14]

      (14) Chen, Y.; Varani, G. The FEBS Journal 2005, 272, 2088. doi: 10.1111/ejb.2005.272.issue-9

    15. [15]

      (15) Antson, A. A.; Dodson, E. J.; Dodson, G.; Greaves, R. B.; Chen,X.; llnick, P. Nature 1999, 401, 235. doi: 10.1038/45730

    16. [16]

      (16) Frazao, C.; McVey, C. E.; Amblar, M.; Barbas, A.; Vonrhein, C.;Arraiano, C. M.; Carrondo, M. A. Nature 2006, 443, 110. doi: 10.1038/nature05080

    17. [17]

      (17) Hudson, B. P.; Martinez-Yamout, M. A.; Dyson, H. J.;Wright, P.E. Nature Structural & Molecular Biology 2004, 11, 257. doi: 10.1038/nsmb738

    18. [18]

      (18) Lewis, H. A.; Musunuru, K.; Jensen, K. B.; Edo, C.; Chen, H.;Darnell, R. B.; Burley, S. K. Cell 2000, 100, 323. doi: 10.1016/S0092-8674(00)80668-6

    19. [19]

      (19) Lu, D.; Searles, M. A.; Klug, A. Nature 2003, 426, 96. doi: 10.1038/nature02088

    20. [20]

      (20) Ma, J. B.; Ye, K.; Patel, D. J. Nature 2004, 429, 318. doi: 10.1038/nature02519

    21. [21]

      (21) Ma, J. B.; Yuan, Y. R.; Meister, G.; Pei, Y.; Tuschl, T.; Patel, D.J. Nature 2005, 434, 666. doi: 10.1038/nature03514

    22. [22]

      (22) Oberstrass, F. C.; Lee, A.; Stefl, R.; Janis, M.; Chanfreau, G.;Allain, F. H. Nature Structural & Molecular Biology 2006, 13,160. doi: 10.1038/nsmb1038

    23. [23]

      (23) Oubridge, C.; Ito, N.; Evans, P. R.; Teo, C. H.; Nagai, K. Nature1994, 372, 432. doi: 10.1038/372432a0

    24. [24]

      (24) Ramos, A.; Grunert, S.; Adams, J.; Micklem, D. R.; Proctor, M.R.; Freund, S.; Bycroft, M.; St Johnston, D.; Varani, G. The EMBO Journal 2000, 19, 997. doi: 10.1093/emboj/19.5.997

    25. [25]

      (25) Sachs, R.; Max, K. E.; Heinemann, U.; Balbach, J. RNA 2012,18, 65. doi: 10.1261/rna.02809212

    26. [26]

      (26) Schumacher, M. A.; Pearson, R. F.; Moller, T.; Valentin-Hansen,P.; Brennan, R. G. The EMBO Journal 2002, 21, 3546. doi: 10.1093/emboj/cdf322

    27. [27]

      (27) Wang, X.; McLachlan, J.; Zamore, P. D.; Hall, T. M. Cell 2002,110, 501. doi: 10.1016/S0092-8674(02)00873-5

    28. [28]

      (28) Cook, K. B.; Kazan, H.; Zuberi, K.; Morris, Q.; Hughes, T. R.Nucleic Acids Research 2011, 39, D301.

    29. [29]

      (29) Tian, B.; Bevilacqua, P. C.; Diegelman-Parente, A.; Mathews,M. B. Nature Reviews. Molecular Cell Biology 2004, 5, 1013.doi: 10.1038/nrm1528

    30. [30]

      (30) Schumacher, M. A.; Karamooz, E.; Zikova, A.; Trantirek, L.;Lukes, J. Cell 2006, 126, 701. doi: 10.1016/j.cell.2006.06.047

    31. [31]

      (31) Das, R.; Karanicolas, J.; Baker, D. Nature Methods 2010, 7,291. doi: 10.1038/nmeth.1433

    32. [32]

      (32) Sharma, S.; Ding, F.; Dokholyan, N. V. Bioinformatics 2008, 24,1951. doi: 10.1093/bioinformatics/btn328

    33. [33]

      (33) Martinez, H. M.; Maizel, J. V., Jr.; Shapiro, B. A. Journal of Biomolecular Structure & Dynamics 2008, 25, 669. doi: 10.1080/07391102.2008.10531240

    34. [34]

      (34) Parisien, M.; Major, F. Nature 2008, 452, 51. doi: 10.1038/nature06684

    35. [35]

      (35) Zhao, Y.; ng, Z.; Xiao, Y. Journal of Biomolecular Structure & Dynamics 2011, 28, 815. doi: 10.1080/07391102.2011.10508609

    36. [36]

      (36) Shulman-Peleg, A.; Nussinov, R.;Wolfson, H. J. Nucleic Acids Research 2009, 37, D369.

    37. [37]

      (37) Lewis, B. A.;Walia, R. R.; Terribilini, M.; Ferguson, J.; Zheng,C.; Honavar, V.; Dobbs, D. Nucleic Acids Research 2011, 39,D277.

    38. [38]

      (38) Wang, Y.; Li, Y.; Ma, Z.; Yang,W.; Ai, C. PLoS Comput. Biol.2010, 6, e1000866.

    39. [39]

      (39) Jones, S.; Daley, D. T.; Luscombe, N. M.; Berman, H. M.;Thornton, J. M. Nucleic Acids Research 2001, 29, 943. doi: 10.1093/nar/29.4.943

    40. [40]

      (40) Allers, J.; Shamoo, Y. J. Mol. Biol. 2001, 311, 75. doi: 10.1006/jmbi.2001.4857

    41. [41]

      (41) Ellis, J. J.; Broom, M.; Jones, S. Proteins 2007, 66, 903.

    42. [42]

      (42) Chen, Y. C.; Lim, C. Nucleic Acids Research 2008, 36, 7078.doi: 10.1093/nar/gkn868

    43. [43]

      (43) Bahadur, R. P.; Zacharias, M.; Janin, J. Nucleic Acids Research2008, 36, 2705. doi: 10.1093/nar/gkn102

    44. [44]

      (44) Shazman, S.; Mandel-Gutfreund, Y. PLoS Comput. Biol. 2008,4, e1000146.

    45. [45]

      (45) Brandman, R.; Brandman, Y.; Pande, V. S. PLoS One 2012, 7,e30022.

    46. [46]

      (46) Terribilini, M.; Lee, J. H.; Yan, C.; Jernigan, R. L.; Honavar, V.;Dobbs, D. RNA 2006, 12, 1450. doi: 10.1261/rna.2197306

    47. [47]

      (47) Kim, O. T.; Yura, K.; , N. Nucleic Acids Research 2006, 34,6450. doi: 10.1093/nar/gkl819

    48. [48]

      (48) Chen, Y. C.; Lim, C. Nucleic Acids Research 2008, 36, e29.

    49. [49]

      (49) Kumar, M.; Gromiha, M. M.; Raghava, G. P. Proteins 2008, 71,189. doi: 10.1002/prot.v71:1

    50. [50]

      (50) Zhao, H.; Yang, Y.; Zhou, Y. Nucleic Acids Research 2011, 39,3017.

    51. [51]

      (51) Perez-Cano, L.; Fernandez-Recio, J. Proteins 2010, 78, 25. doi: 10.1002/prot.22527

    52. [52]

      (52) Ma, X.; Guo, J.;Wu, J.; Liu, H.; Yu, J.; Xie, J.; Sun, X. Proteins2011, 79, 1230.

    53. [53]

      (53) Chen, Y.; Kortemme, T.; Robertson, T.; Baker, D.; Varani, G.Nucleic Acids Research 2004, 32, 5147. doi: 10.1093/nar/gkh785

    54. [54]

      (54) Zheng, S.; Robertson, T. A.; Varani, G. The FEBS Journal 2007,274, 6378. doi: 10.1111/j.1742-4658.2007.06155.x

    55. [55]

      (55) Perez-Cano, L.; Solernou, A.; Pons, C.; Fernandez-Recio, J.Pac. Symp. Biocomput. 2010, 293.

    56. [56]

      (56) Katchalski-Katzir, E.; Shariv, I.; Eisenstein, M.; Friesem, A. A.;Aflalo, C.; Vakser, I. A. Proceedings of the National Academy of Sciences of the United States of America 1992, 89, 2195. doi: 10.1073/pnas.89.6.2195

    57. [57]

      (57) Chen, R.;Weng, Z. Proteins 2002, 47, 281. doi: 10.1002/(ISSN)1097-0134

    58. [58]

      (58) Gray, J. J.; Moughon, S.;Wang, C.; Schueler-Furman, O.;Kuhlman, B.; Rohl, C. A.; Baker, D. J. Mol. Biol. 2003, 331,281. doi: 10.1016/S0022-2836(03)00670-3

    59. [59]

      (59) Dominguez, C.; Boelens, R.; Bonvin, A. M. J. Am. Chem. Soc.2003, 125, 1731. doi: 10.1021/ja026939x

    60. [60]

      (60) Li, L.; Guo, D.; Huang, Y.; Liu, S.; Xiao, Y. BMC Bioinformatics 2011, 12, 36. doi: 10.1186/1471-2105-12-36

    61. [61]

      (61) Zhang, C.; Lai, L. Journal of Computational Chemistry 2011,32, 2598. doi: 10.1002/jcc.v32.12

    62. [62]

      (62) Li, C. H.; Cao, L. B.; Su, J. G.; Yang, Y. X.;Wang, C. X.Proteins 2012, 80, 14. doi: 10.1002/prot.v80.1

    63. [63]

      (63) Setny, P.; Zacharias, M. Nucleic Acids Research 2011, 39, 9118.doi: 10.1093/nar/gkr636

    64. [64]

      (64) Tuszynska, I.; Bujnicki, J. M. BMC Bioinformatics 2011, 12,348. doi: 10.1186/1471-2105-12-348

    65. [65]

      (65) Jiang, F.; Kim, S. H. J. Mol. Biol. 1991, 219, 79. doi: 10.1016/0022-2836(91)90859-5

    66. [66]

      (66) Gabb, H. A.; Jackson, R. M.; Sternberg, M. J. J. Mol. Biol.1997, 272, 106. doi: 10.1006/jmbi.1997.1203

    67. [67]

      (67) Kozakov, D.; Brenke, R.; Comeau, S. R.; Vajda, S. Proteins2006, 65, 392. doi: 10.1002/prot.21117

    68. [68]

      (68) Abagyan, R.; Totrov, M. J. Mol. Biol. 1994, 235, 983. doi: 10.1006/jmbi.1994.1052

    69. [69]

      (69) Wang, C.; Bradley, P.; Baker, D. J. Mol. Biol. 2007, 373, 503.doi: 10.1016/j.jmb.2007.07.050

    70. [70]

      (70) May, A.; Zacharias, M. Proteins 2008, 70, 794.

    71. [71]

      (71) Chaudhury, S.; Gray, J. J. J. Mol. Biol. 2008, 381, 1068. doi: 10.1016/j.jmb.2008.05.042

    72. [72]

      (72) Lesk, V. I.; Sternberg, M. J. Bioinformatics 2008, 24, 1137. doi: 10.1093/bioinformatics/btn093

    73. [73]

      (73) Smith, G. R.; Sternberg, M. J.; Bates, P. A. J. Mol. Biol. 2005,347, 1077. doi: 10.1016/j.jmb.2005.01.058

    74. [74]

      (74) Huang, Y.; Liu, Z. J. Mol. Biol. 2009, 393, 1143. doi: 10.1016/j.jmb.2009.09.010

    75. [75]

      (75) Harel, M.; Spaar, A.; Schreiber, G. Biophys. J. 2009, 96, 4237.doi: 10.1016/j.bpj.2009.02.054

    76. [76]

      (76) Kim, Y. C.; Tang, C.; Clore, G. M.; Hummer, G. Proceedings of the National Academy of Sciences of the United States of America 2008, 105, 12855. doi: 10.1073/pnas.0802460105

    77. [77]

      (77) Tang, C.; Iwahara, J.; Clore, G. M. Nature 2006, 444, 383. doi: 10.1038/nature05201

    78. [78]

      (78) Volkov, A. N.; Ubbink, M.; van Nuland, N. A. J. Biomol. NMR2010, 48, 225. doi: 10.1007/s10858-010-9452-6

    79. [79]

      (79) Sanchez, I. E.; Ferreiro, D. U.; Dellarole, M.; de Prat-Gay, G.Proceedings of the National Academy of Sciences of the United States of America 2010, 107, 7751. doi: 10.1073/pnas.0911734107

    80. [80]

      (80) Harel, M.; Cohen, M.; Schreiber, G. J. Mol. Biol. 2007, 371,180. doi: 10.1016/j.jmb.2007.05.032

    81. [81]

      (81) Fawzi, N. L.; Doucleff, M.; Suh, J. Y.; Clore, G. M.Proceedings of the National Academy of Sciences of the United States of America 2010, 107, 1379. doi: 10.1073/pnas.0909370107

    82. [82]

      (82) Hwang, H.; Vreven, T.; Janin, J.;Weng, Z. Proteins 2010, 78,3111. doi: 10.1002/prot.v78:15

    83. [83]

      (83) Liang, S.; Zhang, C.; Liu, S.; Zhou, Y. Nucleic Acids Research2006, 34, 3698. doi: 10.1093/nar/gkl454

    84. [84]

      (84) Guo, D.; Liu, S. Y.; Huang, Y. Y.; Xiao, Y. Journal of Biomolecular Structure and Dynamics 2012, in press.

    85. [85]

      (85) Li, X.; Liang, J. Knowledge-Based Energy Functions forComputational Studies of Proteins. In Computational Methods for Protein Structure Prediction and Modeling; Xu, Y., Xu, D.,Liang, J., Eds.; New York: Springer, 2006; Vol. 1; p 71.

    86. [86]

      (86) Zhou, Y.; Duan, Y.; Yang, Y.; Faraggi, E.; Lei, H. Theoretical Chemistry Accounts 2011, 128, 3. doi: 10.1007/s00214-010-0799-2

    87. [87]

      (87) Zhou, H.; Skolnick, J. Biophys. J. 2011, 101, 2043. doi: 10.1016/j.bpj.2011.09.012

    88. [88]

      (88) Czaplewski, C.; Liwo, A.; Makowski, M.; Oldziej, S.;Scheraga, H. A. Coarse-Grained Models of Proteins: Theoryand Applications. In Multiscale Approaches to Protein Modeling; Kolinski, A. Ed.; Springer, 2010; p 35.

    89. [89]

      (89) Kortemme, T.; Morozov, A. V.; Baker, D. J. Mol. Biol. 2003,326, 1239. doi: 10.1016/S0022-2836(03)00021-4

    90. [90]

      (90) Jiang, L.; Kuhlman, B.; Kortemme, T.; Baker, D. Proteins2005, 58, 893. doi: 10.1002/prot.20347

    91. [91]

      (91) Jiang, L.; Lai, L. The Journal of Biological Chemistry 2002,277, 37732. doi: 10.1074/jbc.M204514200

    92. [92]

      (92) Jiang, L.; Gao, Y.; Mao, F.; Liu, Z.; Lai, L. Proteins 2002, 46,190. doi: 10.1002/(ISSN)1097-0134

    93. [93]

      (93) Wang, C. X.; Chang, S.; ng, X. Q.; Yang, F.; Li, C. H.;Chen,W. Z. Acta Phys. -Chim. Sin. 2012, 28, 751. [王存新,常珊, 龚新奇, 杨峰, 李春华, 陈慰祖. 物理化学学报,2012, 28, 751.] doi: 10.3866/PKU.WHXB201202022

    94. [94]

      (94) Liu, S.; Li, Q.; Lai, L. Proteins 2006, 64, 68. doi: 10.1002/prot.20954

    95. [95]

      (95) Zacharias, M. Protein Science: a Publication of the Protein Society 2003, 12, 1271.

    96. [96]

      (96) Liang, S.; Liu, S.; Zhang, C.; Zhou, Y. Proteins 2007, 69, 244.doi: 10.1002/prot.v69:2

    97. [97]

      (97) Huang, S. Y.; Zou, X. Proteins 2008, 72, 557. doi: 10.1002/prot.21949

    98. [98]

      (98) Sun,W. T. Advances in Mechanics 2011, 41, 60. [孙卫涛.力学进展, 2011, 41, 60.]

    99. [99]

      (99) Pierce, B.;Weng, Z. Proteins 2007, 67, 1078. doi: 10.1002/prot.21373

    100. [100]

      (100) Zhou, H.; Zhou, Y. Protein Science: a Publication of the Protein Society 2002, 11, 2714.

    101. [101]

      (101) Lu, H.; Skolnick, J. Proteins 2001, 44, 223. doi: 10.1002/(ISSN)1097-0134

    102. [102]

      (102) Samudrala, R.; Moult, J. J. Mol. Biol. 1998, 275, 895. doi: 10.1006/jmbi.1997.1479

    103. [103]

      (103) Chuang, G. Y.; Kozakov, D.; Brenke, R.; Comeau, S. R.; Vajda,S. Biophys. J. 2008, 95, 4217. doi: 10.1529/biophysj.108.135814

    104. [104]

      (104) Liu, S.; Vakser, I. A. BMC Bioinformatics 2011, 12, 280. doi: 10.1186/1471-2105-12-280

    105. [105]

      (105) Liu, S.; Zhang, C.; Zhou, H.; Zhou, Y. Proteins 2004, 56, 93.doi: 10.1002/prot.20019

    106. [106]

      (106) Lensink, M. F.; Mendez, R.;Wodak, S. J. Proteins 2007, 69,704. doi: 10.1002/prot.21804

    107. [107]

      (107) Mendez, R.; Leplae, R.; Lensink, M. F.;Wodak, S. J. Proteins2005, 60, 150. doi: 10.1002/prot.20551

    108. [108]

      (108) Chang, S.; Jiao, X.; Li, C. H.; ng, X. Q.; Chen,W. Z.;Wang, C. X. Biophysical Chemistry 2008, 134, 111. doi: 10.1016/j.bpc.2007.12.005

    109. [109]

      (109) Li, C. H.; Ma, X. H.; Shen, L. Z.; Chang, S.; Chen,W. Z.;Wang, C. X. Biophysical Chemistry 2007, 129, 1. doi: 10.1016/j.bpc.2007.04.014

    110. [110]

      (110) Guerois, R.; Nielsen, J. E.; Serrano, L. J. Mol. Biol. 2002, 320,369. doi: 10.1016/S0022-2836(02)00442-4

    111. [111]

      (111) Chen, N. Y.; Su, Z. Y.; Mou, C. Y. Physical Review Letters2006, 96, 078103. doi: 10.1103/PhysRevLett.96.078103

    112. [112]

      (112) Korkut, A.; Hendrickson,W. A. Proceedings of the National Academy of Sciences of the United States of America 2009,106, 15673. doi: 10.1073/pnas.0907684106

    113. [113]

      (113) Li,W.;Wolynes, P. G.; Takada, S. Proceedings of the National Academy of Sciences of the United States of America 2011,108, 3504. doi: 10.1073/pnas.1018983108

    114. [114]

      (114) Ellis, J. J.; Jones, S. Proteins 2008, 70, 1518.

    115. [115]

      (115) Lindahl, E.; Delarue, M. Nucleic Acids Research 2005, 33,4496. doi: 10.1093/nar/gki730

    116. [116]

      (116) Cavasotto, C. N.; Kovacs, J. A.; Abagyan, R. A. J. Am. Chem. Soc. 2005, 127, 9632. doi: 10.1021/ja042260c

    117. [117]

      (117) Petrone, P.; Pande, V. S. Biophys. J. 2006, 90, 1583. doi: 10.1529/biophysj.105.070045

    118. [118]

      (118) Korkut, A.; Hendrickson,W. A. Proceedings of the National Academy of Sciences of the United States of America 2009,106, 15667. doi: 10.1073/pnas.0907674106

    119. [119]

      (119) Dobbins, S. E.; Lesk, V. I.; Sternberg, M. J. Proceedings of the National Academy of Sciences of the United States of America2008, 105, 10390. doi: 10.1073/pnas.0802496105

    120. [120]

      (120) Pons, C.; Solernou, A.; Perez-Cano, L.; Grosdidier, S.;Fernandez-Recio, J. Proteins 2010, 78, 3182. doi: 10.1002/prot.v78:15

    121. [121]

      (121) Perez-Cano, L.; Jimenez-Garcia, B.; Fernandez-Recio, J.Proteins 2012, 80, 1872.

    122. [122]

      (122) Barik, A.; Nithin, C.; Manasa, P.; Bahadur, R. P. Proteins 2012,80, 1866.

    123. [123]

      (123) Hermann, T. Angew Chem. Int. Edit. 2000, 39, 1890. doi: 10.1002/(ISSN)1521-3773

    124. [124]

      (124) Mackay, J. P.; Font, J.; Segal, D. J. Nature Structural & Molecular Biology 2011, 18, 256. doi: 10.1038/nsmb.2005

    125. [125]

      (125) Filipovska, A.; Razif, M. F.; Nygard, K. K.; Rackham, O.Nature Chemical Biology 2011, 7, 425. doi: 10.1038/nchembio.577

    126. [126]

      (126) Dong, S.;Wang, Y.; Cassidy-Amstutz, C.; Lu, G.; Bigler, R.;Jezyk, M. R.; Li, C.; Hall, T. M.;Wang, Z. The Journal of Biological Chemistry 2011, 286, 26732. doi: 10.1074/jbc.M111.244889

    127. [127]

      (127) Chen, Y.; Varani, G. Chemistry & Biology 2011, 18, 821.

    128. [128]

      (128) Lu, G.; Dolgner, S. J.; Hall, T. M. Current Opinion in Structural Biology 2009, 19, 110. doi: 10.1016/j.sbi.2008.12.009

    129. [129]

      (129) Cooke, A.; Prigge, A.; Opperman, L.;Wickens, M.Proceedings of the National Academy of Sciences of the United States of America 2011, 108, 15870. doi: 10.1073/pnas.1105151108

    130. [130]

      (130) Koh, Y. Y.;Wang, Y.; Qiu, C.; Opperman, L.; Gross, L.; TanakaHall, T. M.;Wickens, M. RNA 2011, 17, 718. doi: 10.1261/rna.2540311

    131. [131]

      (131) Wells, J. A.; McClendon, C. L. Nature 2007, 450, 1001. doi: 10.1038/nature06526

    132. [132]

      (132) Arkin, M. R.;Wells, J. A. Nat. Rev. Drug. Discov. 2004, 3, 301.doi: 10.1038/nrd1343

    133. [133]

      (133) Arkin, M. Curr. Opin. Chem. Biol. 2005, 9, 317. doi: 10.1016/j.cbpa.2005.03.001

    134. [134]

      (134) Bourgeas, R.; Basse, M. J.; Morelli, X.; Roche, P. PloS One2010, 5, e9598.

    135. [135]

      (135) Zhang, C.; Lai, L. Biochemical Society Transactions 2011, 39,1382. doi: 10.1042/BST0391382

    136. [136]

      (136) Liu, S.; Zhu, X.; Liang, H.; Cao, A.; Chang, Z.; Lai, L.Proceedings of the National Academy of Sciences of the United States of America 2007, 104, 5330. doi: 10.1073/pnas.0606198104

    137. [137]

      (137) Fleishman, S. J.; Whitehead, T. A.; Ekiert, D. C.; Dreyfus, C.;Corn, J. E.; Strauch, E. M.;Wilson, I. A.; Baker, D. Science2011, 332, 816. doi: 10.1126/science.1202617

    138. [138]

      (138) Der, B. S.; Kuhlman, B. Science 2011, 332, 801. doi: 10.1126/science.1207082

    139. [139]

      (139) Zhang, C.; Lai, L. Proteins 2012, 80, 1078. doi: 10.1002/prot.v80.4

    140. [140]

      (140) Bai, H. J.; Lai, L. H. Acta Phys. -Chim. Sin. 2010, 26, 1988.[白红军, 来鲁华. 物理化学学报, 2010, 26, 1988.] doi: 10.3866/PKU.WHXB20100725


  • 加载中
    1. [1]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    2. [2]

      Manman Jin Zhiguo Lv Qingtao Niu . Teaching Reformation and Case Study for “Chemical Process Development and Design” Based on “Just-in-Time” Dynamic and Accurate Matching Industrial Needs. University Chemistry, 2024, 39(11): 108-116. doi: 10.12461/PKU.DXHX202403030

    3. [3]

      Shuang Meng Haixin Long Zhou Zhou Meizhu Rong . Inorganic Chemistry Curriculum Design and Implementation of Based on “Stepped-Task Driven + Multi-Dimensional Output” Model: A Case Study on Intermolecular Forces. University Chemistry, 2024, 39(3): 122-131. doi: 10.3866/PKU.DXHX202309008

    4. [4]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    5. [5]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    6. [6]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    7. [7]

      Chunai Dai Yongsheng Han Luting Yan Zhen Li Yingze Cao . Ideological and Political Design of Solid-liquid Contact Angle Measurement Experiment. University Chemistry, 2024, 39(2): 28-33. doi: 10.3866/PKU.DXHX202306065

    8. [8]

      Kai Yang Gehua Bi Yong Zhang Delin Jin Ziwei Xu Qian Wang Lingbao Xing . Comprehensive Polymer Chemistry Experiment Design: Preparation and Characterization of Rigid Polyurethane Foam Materials. University Chemistry, 2024, 39(4): 206-212. doi: 10.3866/PKU.DXHX202308045

    9. [9]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    10. [10]

      Xuan Zhou Yi Fan Zhuoqi Jiang Zhipeng Li Guowen Yuan Laiying Zhang Xu Hou . Liquid Gating Mechanism and Basic Properties Characterization: a New Experimental Design for Interface and Surface Properties in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 113-120. doi: 10.12461/PKU.DXHX202407111

    11. [11]

      Hongyun Liu Jiarun Li Xinyi Li Zhe Liu Jiaxuan Li Cong Xiao . Course Ideological and Political Design of a Comprehensive Chemistry Experiment: Constructing a Visual Molecular Logic System Based on Intelligent Hydrogel Film Electrodes. University Chemistry, 2024, 39(2): 227-233. doi: 10.3866/PKU.DXHX202309070

    12. [12]

      Feng Zheng Ruxun Yuan Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027

    13. [13]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

    14. [14]

      Wenliang Wang Weina Wang Sufan Wang Tian Sheng Tao Zhou Nan Wei . “Schrödinger Equation – Approximate Models – Core Concepts – Simple Applications”: Constructing a Logical Framework and Knowledge Graph of Atom and Molecule Structures. University Chemistry, 2024, 39(8): 338-343. doi: 10.3866/PKU.DXHX202312084

    15. [15]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    16. [16]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    17. [17]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    18. [18]

      Wei Li Ze Chang Meihui Yu Ying Zhang . Curriculum Ideological and Political Design of Piezoelectricity Measurement Experiments of Coordination Compounds. University Chemistry, 2024, 39(2): 77-82. doi: 10.3866/PKU.DXHX202308004

    19. [19]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    20. [20]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

Metrics
  • PDF Downloads(1584)
  • Abstract views(2567)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return