Citation: AI Yong, ZHANG Hao-Li. Construction and Conductance Measurement of Single Molecule Junctions[J]. Acta Physico-Chimica Sinica, ;2012, 28(10): 2237-2248. doi: 10.3866/PKU.WHXB201209102 shu

Construction and Conductance Measurement of Single Molecule Junctions

  • Received Date: 6 July 2012
    Available Online: 10 September 2012

    Fund Project: 国家重点基础研究发展规划项目(973) (2012CB933102) (973) (2012CB933102) 国家自然科学基金(21190034, 21073079) (21190034, 21073079) 博士点基金(20110211130001)资助 (20110211130001)

  • Molecular electronics has become an important research field in the past decade, and molecular devices can be used as molecular wires, switches, rectifiers, and transistors etc. Construction of metal/molecule/metal (MMM) junctions is the most effective method for investigating the charge transport properties of molecular devices. However, the measurement of individual molecule junctions at the nanoscale is still very challenging because of many technical difficulties. This paper reviews the recent progress and the challenges in the measurement of single molecule conductance, and summarizes investigation of the charge transport mechanism.

  • 加载中
    1. [1]

      (1) Duan, X. F.; Huang, Y.; Agarwal, R.; Lieber, C. M. Nature 2003,421, 241. doi: 10.1038/nature01353

    2. [2]

      (2) Peumans, P.; Yakimov, A.; Forrest, S. R. J. Appl. Phys. 2003, 93,3693. doi: 10.1063/1.1534621

    3. [3]

      (3) Cotrone, S.; Cafagna, D.; Cometa, S.; De Giglio, E.; Magliulo,M.; Torsi, L.; Sabbatini, L. Anal. Bioanal. Chem. 2012, 403,331. doi: 10.1007/s00216-012-5775-3

    4. [4]

      (4) Katoh, K.; Isshiki, H.; Komeda, T.; Yamashita, M. Chemistry-an Asian Journal 2012, 7, 1154. doi: 10.1002/asia.v7.6

    5. [5]

      (5) Bumm, L. A.; Arnold, J. J.; Cygan, M. T.; Dunbar, T. D.;Burgin, T. P.; Jones, L.; Allara, D. L.; Tour, J. M.;Weiss, P. S.Science 1996, 271, 1705. doi: 10.1126/science.271.5256.1705

    6. [6]

      (6) Tour, J. M. Accounts Chem. Res. 2000, 33, 791. doi: 10.1021/ar0000612

    7. [7]

      (7) Feynman, R. P. Science 1966, 153, 699. doi: 10.1126/science.153.3737.699

    8. [8]

      (8) Song, H.; Reed, M. A.; Lee, T. Adv. Mater. 2011, 23, 1583. doi: 10.1002/adma.201004291

    9. [9]

      (9) Tam, E. S.; Parks, J. J.; Shum,W.W.; Zhong, Y.-W.; Santia -Berrios, M. E. B.; Zheng, X.; Yang,W.; Chan, G. K. L.; Abruna,H. D.; Ralph, D. C. ACS Nano 2011, 5, 5115. doi: 10.1021/nn201199b

    10. [10]

      (10) Wang, G.; Kim, T.-W.; Jo, G.; Lee, T. J. Am. Chem. Soc. 2009,131, 5980. doi: 10.1021/ja900773h

    11. [11]

      (11) Shiomi, D.; Nozaki, M.; Ise, T.; Sato, K.; Takui, T. J. Phys. Chem. B 2004, 108, 16606. doi: 10.1021/jp046621m

    12. [12]

      (12) Huang, Z.; Xu, B.; Chen, Y.; Di Ventra, M.; Tao, N. Nano Lett.2006, 6, 1240. doi: 10.1021/nl0608285

    13. [13]

      (13) Boccia, A.; Lanzilotto, V.; Marrani, A. G.; Stranges, S.; Zanoni,R.; Alagia, M.; Fronzoni, G.; Decleva, P. J. Chem. Phys. 2012,136, 134308. doi: 10.1063/1.3698283

    14. [14]

      (14) llub, C.; Avdoshenko, S.; Gutierrez, R.; Berlin, Y.; Cuniberti,G. Isr. J. Chem. 2012, 52, 452. doi: 10.1002/ijch.201100092

    15. [15]

      (15) Herrera-Lopez, E. J. Lipase and Phospholipase Biosensors: AReview. In Lipases and Phospholipases: Methods and Protocols; Sandoval, G., Ed., 2012; Vol. 861; p 525.

    16. [16]

      (16) Petrov, E. G.; Leonov, V. A.; Shevchenko, Y. V. Low Temp. Phys. 2012, 38, 428. doi: 10.1063/1.4711127

    17. [17]

      (17) Aviram, A.; Ratner, M. A. Chem. Phys. Lett. 1974, 29, 277. doi: 10.1016/0009-2614(74)85031-1

    18. [18]

      (18) Aviram, A.; Ratner, M. A.; Mujica, V. Annals of the New YorkAcademy of Sciences. Molecular electronics II. In Annals of the New York Academy of Sciences. Molecular electronics II;Aviram, A., Ratner, M. A., Mujica, V. Eds.; 2002; Vol. 960, p i.

    19. [19]

      (19) Yang,W. R.; Jones, M.W.; Li, X.; Eggers, P. K.; Tao, N.; oding, J. J.; Paddon-Row, M. N. J. Phys. Chem. C 2008, 112,9072. doi: 10.1021/jp802328b

    20. [20]

      (20) Wang, L. J.; Zhou, K. G.; Tan, L.;Wang, H.; Shi, Z. F.;Wu, G.P.; Xu, Z. G.; Cao, X. P.; He, H. X.; Zhang, H. L. Chemistry-a European Journal 2011, 17, 8414. doi: 10.1002/chem.201003507

    21. [21]

      (21) Baldea, I. Chem. Phys. 2012, 400, 65. doi: 10.1016/j.chemphys.2012.02.011

    22. [22]

      (22) Kalitsov, A. V.; Chshiev, M. G.; Velev, J. P. Phys. Rev. B 2012,85.

    23. [23]

      (23) Bakovets, V. V.; Nadolinnyi, V. A.; Erenburg, S. B.; Kuznetsov,A. M.; Dol vesova, I. P. Russ. J. Inorg. Chem. 2010, 55, 1897.doi: 10.1134/S0036023610120132

    24. [24]

      (24) Dei, A.; Sorace, L. Appl. Magn. Reson. 2010, 38, 139. doi: 10.1007/s00723-010-0121-4

    25. [25]

      (25) Hoffert,W. A.; Rappe, A. K.; Shores, M. P. J. Am. Chem. Soc.2011, 133, 20823. doi: 10.1021/ja206735y

    26. [26]

      (26) Mishchenko, A.; Vonlanthen, D.; Meded, V.; Bürkle, M.; Li,C.; Pobelov, I. V.; Bagrets, A.; Viljas, J. K.; Pauly, F.; Evers, F.;Mayor, M.;Wandlowski, T. Nano Lett. 2010, 10, 156. doi: 10.1021/nl903084b

    27. [27]

      (27) Yoon, M. H.; DiBenedetto, S. A.; Facchetti, A.; Marks, T. J.J. Am. Chem. Soc. 2005, 127, 1348. doi: 10.1021/ja045124g

    28. [28]

      (28) Danilov, A.; Kubatkin, S.; Kafanov, S.; Hedegard, P.; Stuhr-Hansen, N.; Moth-Poulsen, K.; Bjornholm, T. Nano Lett. 2008,8, 1. doi: 10.1021/nl071228o

    29. [29]

      (29) Chen, F.; Li, X.; Hihath, J.; Huang, Z.; Tao, N. J. Am. Chem. Soc. 2006, 128, 15874. doi: 10.1021/ja065864k

    30. [30]

      (30) Martin, S.; Haiss,W.; Higgins, S. J.; Nichols, R. J. Nano Lett.2010, 10, 2019. doi: 10.1021/nl9042455

    31. [31]

      (31) Scullion, L.; Doneux, T.; Bouffier, L.; Fernig, D. G.; Higgins, S.J.; Bethell, D.; Nichols, R. J. J. Phys. Chem. C 2011, 115, 8361.

    32. [32]

      (32) Damle, P.; Ghosh, A.W.; Datta, S. Chem. Phys. 2002, 281, 171.doi: 10.1016/S0301-0104(02)00496-2

    33. [33]

      (33) Zhou, L.; Yang, S.W.; Ng, M. F.; Sullivan, M. B.; Tan, V. B. C.;Shen, L. J. Am. Chem. Soc. 2008, 130, 4023. doi: 10.1021/ja7100246

    34. [34]

      (34) Martin, S.; Grace, I.; Bryce, M. R.;Wang, C.; Jitchati, R.;Batsanov, A. S.; Higgins, S. J.; Lambert, C. J.; Nichols, R. J.J. Am. Chem. Soc. 2010, 132, 9157. doi: 10.1021/ja103327f

    35. [35]

      (35) Coropceanu, V.; Cornil, J.; da Silva Filho, D. A.; Olivier, Y.;Silbey, R.; Bredas, J.-L. Chem. Rev. 2007, 107, 926. doi: 10.1021/cr050140x

    36. [36]

      (36) Zhang, J.; Kuznetsov, A. M.; Medvedev, I. G.; Chi, Q.; Albrecht,T.; Jensen, P. S.; Ulstrup, J. Chem. Rev. 2008, 108, 2737. doi: 10.1021/cr068073+

    37. [37]

      (37) Fischl, B.; Sereno, M. I.; Dale, A. M. Neuroimage 1999, 9, 195.doi: 10.1006/nimg.1998.0396

    38. [38]

      (38) Recanzone, G. H.; Schreiner, C. E.; Merzenich, M. M.J. Neurosci. 1993, 13, 87.

    39. [39]

      (39) Ulgut, B.; Abruna, H. D. Chem. Rev. 2008, 108, 2721. doi: 10.1021/cr068060w

    40. [40]

      (40) Kaliginedi, V.; Moreno-Garcia, P.; Valkenier, H.; Hong,W.;Garcia-Suarez, V. M.; Buiter, P.; Otten, J. L. H.; Hummelen, J.C.; Lambert, C. J.;Wandlowski, T. J. Am. Chem. Soc. 2012,134, 5262. doi: 10.1021/ja211555x

    41. [41]

      (41) Chu, C.; Na, J.-S.; Parsons, G. N. J. Am. Chem. Soc. 2007, 129,2287. doi: 10.1021/ja064968s

    42. [42]

      (42) Kay, N. J.; Nichols, R. J.; Higgins, S. J.; Haiss,W.; Sedghi, G.;Schwarzacher,W.; Mao, B.-W. J. Phys. Chem. C 2011, 115,21402. doi: 10.1021/jp206241d

    43. [43]

      (43) Yang, Y.; Liu, J. Y.; Chen, Z. B.; Tian, J. H.; Jin, X.; Liu, B.; Li,X. L.; Luo, Z. Z.; Lu, M.; Yang, F. Z.; Tao, N. J.; Tian, Z. Q.Nanotechnology 2011, 22, 375131.

    44. [44]

      (44) Dudin, P. V.; Snowden, M. E.; Macpherson, J. V.; Unwin, P. R.ACS Nano 2011, 5, 10017. doi: 10.1021/nn203823f

    45. [45]

      (45) Gewirth, A. A.; Niece, B. K. Chem. Rev. 1997, 97, 1129. doi: 10.1021/cr960067y

    46. [46]

      (46) McCarty, G. S.;Weiss, P. S. Chem. Rev. 1999, 99, 1983. doi: 10.1021/cr970110x

    47. [47]

      (47) Janes, D. Nat. Chem. 2009, 1, 601.

    48. [48]

      (48) Pan, S.; Fu, Q.; Huang, T.; Zhao, A.;Wang, B.; Luo, Y.; Yang,J.; Hou, J. Proc. Nat. Acad. Sci. U. S. A. 2009, 106, 15259. doi: 10.1073/pnas.0903131106

    49. [49]

      (49) Hihath, J.; Bruot, C.; Tao, N. ACS Nano 2010, 4, 3823. doi: 10.1021/nn100470s

    50. [50]

      (50) Li, X.; Hihath, J.; Chen, F.; Masuda, T.; Zang, L.; Tao, N. J. Am. Chem. Soc. 2007, 129, 11535. doi: 10.1021/ja072990v

    51. [51]

      (51) Galperin, M.; Ratner, M. A.; Nitzan, A.; Troisi, A. Science 2008,319, 1056. doi: 10.1126/science.1146556

    52. [52]

      (52) Ren, H.; Yang, J.; Luo, Y. J. Chem. Phys. 2010, 133, 064702.doi: 10.1063/1.3474807

    53. [53]

      (53) Zhang, Y.;Wang, L. X. Acta Physica Sinica 2011, 60, 047304.[张元, 王鹿霞. 物理学报, 2011, 60, 047304. ]

    54. [54]

      (54) Hihath, J.; Bruot, C.; Nakamura, H.; Asai, Y.; Diez-Perez, I.;Lee, Y.; Yu, L.; Tao, N. ACS Nano 2011, 5, 8331. doi: 10.1021/nn2030644

    55. [55]

      (55) Zhou, B.; Li, Z. L.; Song, X. N.; Liu, L. F.;Wang, C. K. Acta Phys. -Chim. Sin. 2007, 23, 1577. [邹斌, 李宗良, 宋秀能,刘兰峰, 王传奎. 物理化学学报, 2007, 23, 1577.] doi: 10.3866/PKU.WHXB20071016

    56. [56]

      (56) Scudiero, L.; Barlow, D. E.; Mazur, U.; Hipps, K.W. J. Am. Chem. Soc. 2001, 123, 4073. doi: 10.1021/ja0100726

    57. [57]

      (57) Reddy, P.; Jang, S.-Y.; Segalman, R. A.; Majumdar, A. Science2007, 315, 1568. doi: 10.1126/science.1137149

    58. [58]

      (58) Kelley, T.W.; Granstrom, E. L.; Frisbie, C. D. Adv. Mater. 1999,11, 261.

    59. [59]

      (59) Loiacono, M. J.; Granstrom, E. L.; Frisbie, C. D. J. Phys. Chem. B 1998, 102, 1679. doi: 10.1021/jp973269m

    60. [60]

      (60) Stotter, J.; Show, Y.;Wang, S. H.; Swain, G. Chem. Mater. 2005,17, 4880. doi: 10.1021/cm050762z

    61. [61]

      (61) Wei, Z.; Li, T.; Jennum, K.; Santella, M.; Bovet, N.; Hu,W.;Nielsen, M. B.; Bjornholm, T.; Solomon, G. C.; Laursen, B.W.;Norgaard, K. Langmuir 2012, 28, 4016. doi: 10.1021/la204340n

    62. [62]

      (62) Morita, T.; Lindsay, S. J. Am. Chem. Soc. 2007, 129, 7262. doi: 10.1021/ja072040+

    63. [63]

      (63) Scaini, D.; Castronovo, M.; Casalis, L.; Scoles, G. ACS Nano2008, 2, 507. doi: 10.1021/nn700342p

    64. [64]

      (64) Yee, S. K.; Sun, J.; Darancet, P.; Tilley, T. D.; Majumdar, A.;Neaton, J. B.; Segalman, R. A. ACS Nano 2011, 5, 9256. doi: 10.1021/nn203520v

    65. [65]

      (65) Rief, M.; Gautel, M.; Oesterhelt, F.; Fernandez, J. M.; Gaub, H.E. Science 1997, 276, 1109. doi: 10.1126/science.276.5315.1109

    66. [66]

      (66) Kiguchi, M.; Takahashi, T.; Takahashi, Y.; Yamauchi, Y.;Murase, T.; Fujita, M.; Tada, T.;Watanabe, S. Angew. Chem. Int. Edit. 2011, 50, 5708. doi: 10.1002/anie.201100431

    67. [67]

      (67) Kim, Y.; Pietsch, T.; Erbe, A.; Belzig,W.; Scheer, E. Nano Lett. 2011, 11, 3734. doi: 10.1021/nl201777m

    68. [68]

      (68) Diebold, U. Surf. Sci. Rep. 2003, 48, 53. doi: 10.1016/S0167-5729(02)00100-0

    69. [69]

      (69) Odom, T.W.; Huang, J. L.; Kim, P.; Lieber, C. M. Nature 1998,391, 62. doi: 10.1038/34145

    70. [70]

      (70) Xu, B.; Tao, N. J. Science 2003, 301, 1221. doi: 10.1126/science.1087481

    71. [71]

      (71) Hines, T.; Diez-Perez, I.; Hihath, J.; Liu, H.;Wang, Z.-S.; Zhao,J.; Zhou, G.; Muellen, K.; Tao, N. J. Am. Chem. Soc. 2010, 132,11658. doi: 10.1021/ja1040946

    72. [72]

      (72) Hihath, J.; Arroyo, C. R.; Rubio-Bollinger, G.; Tao, N.; Agrait,N. Nano Lett. 2008, 8, 1673. doi: 10.1021/nl080580e

    73. [73]

      (73) Huang, Z.; Chen, F.; Bennett, P. A.; Tao, N. J. Am. Chem. Soc.2007, 129, 13225. doi: 10.1021/ja074456t

    74. [74]

      (74) Collini, E. Differences Among Coherent Dynamics inEvolutionary Related Light-Harvesting Complexes: Evidencefor Subtle Quantum-Mechanical Strategies for Energy TransferOptimization. In Quantum Optics Ii; Durt, T., Zadkov, V. N.Ed., 2012; Vol. 8440.

    75. [75]

      (75) Shishir, R. S.; Chen, F.; Xia, J.; Tao, N. J.; Ferry, D. K. J. Vac. Sci. Technol. B 2009, 27, 2003. doi: 10.1116/1.3156733

    76. [76]

      (76) Wang, R.; Whiteis, C. A.; Benson, C. J.; Chapleau, M.W.;Abboud, F. M. Hypertension 2011, 58, E70.

    77. [77]

      (77) Battacharyya, S.; Kibel, A.; Kodis, G.; Liddell, P. A.; Gervaldo,M.; Gust, D.; Lindsay, S. Nano Lett. 2011, 11, 2709. doi: 10.1021/nl200977c

    78. [78]

      (78) Zhang, Y.; Dou, C.;Wang, Y. Appl. Surf. Sci. 2011, 257, 6514.doi: 10.1016/j.apsusc.2011.02.059

    79. [79]

      (79) Li, Z.; Park, T.-H.; Rawson, J.; Therien, M. J.; Borguet, E. Nano Lett. 2012, 12, 2722. doi: 10.1021/nl2043216

    80. [80]

      (80) Boardman, B. M.;Widawsky, J. R.; Park, Y. S.; Schenck, C. L.;Venkataraman, L.; Steigerwald, M. L.; Nuckolls, C. J. Am. Chem. Soc. 2011, 133, 8455. doi: 10.1021/ja201334s

    81. [81]

      (81) Kiguchi, M.; Takahashi, T.; Takahashi, Y.; Yamauchi, Y.;Murase, T.; Fujita, M.; Tada, T.;Watanabe, S. Angew. Chem. Int. Edit. 2011, 50, 5707.

    82. [82]

      (82) Reed, M. A.; Zhou, C.; Muller, C. J.; Burgin, T. P.; Tour, J. M.Science 1997, 278, 252. doi: 10.1126/science.278.5336.252

    83. [83]

      (83) nzalez, M. T.;Wu, S.; Huber, R.; van der Molen, S. J.;Schoenenberger, C.; Calame, M. Nano Lett. 2006, 6, 2238. doi: 10.1021/nl061581e

    84. [84]

      (84) Kang, Z. Y.; Song, H.; Yang, Z. M.; Ding, B. J. Rare. Metal. Mat. Eng. 2005, 34, 680.

    85. [85]

      (85) Kiguchi, M.; Sekiguchi, N.; Murakoshi, K. Surf. Sci. 2007, 601,5262. doi: 10.1016/j.susc.2007.04.218

    86. [86]

      (86) Kiguchi, M.; Sekiguchi, N.; Murakoshi, K. In-situ Preparationof a Single Molecular Junction with Mechanically ControllableBreak Junctions in Vacuum. In Proceedings of the 17th International Vacuum Congress/13th International Conference on Surf. Sci./International Conference on Nanoscience and Technology; Johansson, L. S. O., Andersen, J. N., thelid, M.,Helmersson, U., Mntelius, L., Rubel, M., Setina, J.,Wernersson,L. E. Eds., 2008; Vol. 100.

    87. [87]

      (87) Taniguchi, M.; Morimoto, K.; Tsutsui, M.; Kawai, T. Chem. Lett. 2008, 37, 990. doi: 10.1246/cl.2008.990

    88. [88]

      (88) Tian, J. H.; Liu, B.; Li, X.; Yang, Z. L.; Ren, B.;Wu, S. T.;Tao, N.; Tian, Z. Q. J. Am. Chem. Soc. 2006, 128, 14748. doi: 10.1021/ja0648615

    89. [89]

      (89) Tian, J. H.; Liu, B.; Jin, S.; Dai, K.; Chen, Z. B.; Li, X.; Ke,H.;Wu, S. T.; Yang, Y.; Ren, B.; Mao, B.W.; Tao, N.; Tian, Z.Q. A Combined SERS and MCBJ Study on Molecular Junctions on Silicon Chips, In 7th IEEE Conference onNanotechnology, Hong Kong, China, Aug 02-05, 2007;Nanotechnology: 2007.

    90. [90]

      (90) Huber, R.; nzalez, M. T.;Wu, S.; Langer, M.; Grunder, S.;Horhoiu, V.; Mayor, M.; Bryce, M. R.;Wang, C. S.; Jitchati,R.; Schonenberger, C.; Calame, M. J. Am. Chem. Soc. 2008,130, 1080. doi: 10.1021/ja0767940

    91. [91]

      (91) Martin, C. A.; Ding, D.; Sorensen, J. K.; Bjornholm, T.; vanRuitenbeek, J. M.; van der Zant, H. S. J. J. Am. Chem. Soc.2008, 130, 13198. doi: 10.1021/ja804699a

    92. [92]

      (92) Meisner, J. S.; Kamenetska, M.; Krikorian, M.; Steigerwald,M. L.; Venkataraman, L.; Nuckolls, C. Nano Lett. 2011, 11,1575. doi: 10.1021/nl104411f

    93. [93]

      (93) Tanaka, H.; Hong, L.; Fukumori, M.; Negishi, R.; Kobayashi,Y.; Tanaka, D.; Ogawa, T. Nanotechnology 2012, 23, 215701.doi: 10.1088/0957-4484/23/21/215701

    94. [94]

      (94) Guo, X.; Whalley, A.; Klare, J. E.; Huang, L.; O'Brien, S.;Steigerwald, M.; Nuckolls, C. Nano Lett. 2007, 7, 1119. doi: 10.1021/nl070245a

    95. [95]

      (95) Whalley, A. C.; Steigerwald, M. L.; Guo, X.; Nuckolls, C.J. Am. Chem. Soc. 2007, 129, 12590. doi: 10.1021/ja073127y

    96. [96]

      (96) Minary-Jolandan, M.; Yu, M.-F. J. Appl. Phys. 2008, 103,73516. doi: 10.1063/1.2903438

    97. [97]

      (97) Palaci, I.; Fedri , S.; Brune, H.; Klinke, C.; Chen, M.; Riedo,E. Phys. Rev. Lett. 2005, 94, 175502. doi: 10.1103/PhysRevLett.94.175502

    98. [98]

      (98) Ruoff, R. S.; Tersoff, J.; Lorents, D. C.; Subramoney, S.;Chan, B. Nature 1993, 364, 514. doi: 10.1038/364514a0

    99. [99]

      (99) Yu, M. F.; Lourie, O.; Dyer, M. J.; Moloni, K.; Kelly, T. F.;Ruoff, R. S. Science 2000, 287, 637. doi: 10.1126/science.287.5453.637

    100. [100]

      (100) Diehl, M. R.; Steuerman, D.W.; Tseng, H. R.; Vignon, S. A.;Star, A.; Celestre, P. C.; Stoddart, J. F.; Heath, J. R.ChemPhysChem 2003, 4, 1335. doi: 10.1002/cphc.v4:12

    101. [101]

      (101) Feldman, A. K.; Steigerwald, M. L.; Guo, X.; Nuckolls, C.Accounts Chem. Res. 2008, 41, 1731. doi: 10.1021/ar8000266

    102. [102]

      (102) Tsuji, Y.; Staykov, A.; Yoshizawa, K. J. Phys. Chem. C 2009,113, 21477. doi: 10.1021/jp905663r

    103. [103]

      (103) Lee, S. K.; Yamada, R.; Tanaka, S.; Tada, H. ElectricalConductance of Single Oli thiophene MolecularWires:Temperature Effect. In Materials Research Society, 2010 MRSFall Meeting, Boston, Massachusetts, Nov 29-Dec 3, 2010;Cambridge University Press: London, 2011.

    104. [104]

      (104) Andrews, D. Q.; Cohen, R.; Van Duyne, R. P.; Ratner, M. A.J. Chem. Phys. 2006, 125, 174718.

    105. [105]

      (105) Lindsay, S. M.; Ratner, M. A. Adv. Mater. 2007, 19, 23. doi: 10.1002/(ISSN)1521-4095

    106. [106]

      (106) Tsuji, Y.; Staykov, A.; Yoshizawa, K. J. Phys. Chem. C 2012,116, 2575. doi: 10.1021/jp209547a

    107. [107]

      (107) Brandbyge, M.; Mozos, J. L.; Ordejon, P.; Taylor, J.; Stokbro,K. Phys. Rev. B 2002, 65, 165401. doi: 10.1103/PhysRevB.65.165401

    108. [108]

      (108) Li, Z. Y.; Kosov, D. S. J. Phys. Chem. B 2006, 110, 9893. doi: 10.1021/jp0610665

    109. [109]

      (109) Soler, J. M.; Artacho, E.; Gale, J. D.; Garcia, A.; Junquera, J.;Ordejon, P.; Sanchez-Portal, D. J. Phys. Condes. Matter2002, 14, 2745. doi: 10.1088/0953-8984/14/11/302

    110. [110]

      (110) Dell'Angela, M.; Kladnik, G.; Cossaro, A.; Verdini, A.;Kamenetska, M.; Tamblyn, I.; Quek, S. Y.; Neaton, J. B.;Cvetko, D.; Morgante, A.; Venkataraman, L. Nano Lett. 2010,10, 2470. doi: 10.1021/nl100817h

    111. [111]

      (111) Hao, H.; Zheng, X.; Song, L.;Wang, R.; Zeng, Z. Phys. Rev. Lett. 2012, 108, 17202. doi: 10.1103/PhysRevLett.108.017202

    112. [112]

      (112) Mandal, S.; Pati, R. Phys. Rev. B 2011, 83, 195420. doi: 10.1103/PhysRevB.83.195420

    113. [113]

      (113) Taylor, J.; Guo, H.;Wang, J. Phys. Rev. B 2001, 63, 245407.doi: 10.1103/PhysRevB.63.245407

    114. [114]

      (114) Tang, Y. H.; Bagci, V. M. K.; Chen, J. H.; Kaun, C. C. J. Phys. Chem. C 2011, 115, 25105. doi: 10.1021/jp209671v

    115. [115]

      (115) Kaun, C. C.; Larade, B.; Guo, H. Phys. Rev. B 2003, 67,121411. doi: 10.1103/PhysRevB.67.121411

    116. [116]

      (116) Mishchenko, A.; Vonlanthen, D.; Meded, V.; Buerkle, M.; Li,C.; Pobelov, I. V.; Bagrets, A.; Viljas, J. K.; Pauly, F.; Evers,F.; Mayor, M.;Wandlowski, T. Nano Lett. 2010, 10, 156. doi: 10.1021/nl903084b

    117. [117]

      (117) Yu, C.; Liu, H.; Ni,W.; Gao, N.; Zhao, J.; Zhang, H. Phys. Chem. Chem. Phys. 2011, 13, 3461.

    118. [118]

      (118) Liu, H.; Li, P.; Zhao, J.; Yin, X.; Zhang, H. J. Chem. Phys.2008, 129, 224704. doi: 10.1063/1.3030949

    119. [119]

      (119) Zhang, Y. H.; Zhou, K. G.; Xie, K. F.; Zeng, J.; Zhang, H. L.;Peng, Y. Nanotechnology 2010, 21, 065201. doi: 10.1088/0957-4484/21/6/065201

    120. [120]

      (120) Tan, L.; Zhou, K. G.; Zhang, Y. H.;Wang, H. X.;Wang, X. D.;Guo, Y. F.; Zhang, H. L. Electrochem. Commun. 2010, 12,557. doi: 10.1016/j.elecom.2010.01.042

    121. [121]

      (121) Zhang, Y. H.; Chen, Y. B.; Zhou, K. G.; Liu, C. H.; Zeng, J.;Zhang, H. L.; Peng, Y. Nanotechnology 2009, 20, 185504. doi: 10.1088/0957-4484/20/18/185504

    122. [122]

      (122) Zhang, Y. H.; Zhou, K. G.; Xie, K. F.; u, X. C.; Zeng, J.;Zhang, H. L.; Peng, Y. J. Nanosci. Nanotechnol. 2010, 10,7347. doi: 10.1166/jnn.2010.2929

    123. [123]

      (123) Li, S. D.; Yu, Z.; Yen, S. F.; Tang,W. C.; Burke, P. J. Nano Lett. 2004, 4, 753. doi: 10.1021/nl0498740

    124. [124]

      (124) Kurth, S.; Stefanucci, G.; Almbladh, C. O.; Rubio, A.; Gross,E. K. U. Phys. Rev. B 2005, 72, 035308. doi: 10.1103/PhysRevB.72.035308

    125. [125]

      (125) Zhu, Y.; Maciejko, J.; Ji, T.; Guo, H.;Wang, J. Phys. Rev. B2005, 71, 075317. doi: 10.1103/PhysRevB.71.075317

    126. [126]

      (126) Sai, N.; Bushong, N.; Hatcher, R.; Di Ventra, M. Phys. Rev. B2007, 75, 115410. doi: 10.1103/PhysRevB.75.115410

    127. [127]

      (127) Ke, S.-H.; Liu, R.; Yang,W.; Baranger, H. U. J. Chem. Phys.2010, 132 , 234105.

    128. [128]

      (128) Huang, J.;Wang,W.;Yang, S.; Li, Q.;Yang, J. Nanotechnology2012, 23, 225202. doi: 10.1088/0957-4484/23/22/225202

    129. [129]

      (129) Wolf, S. A.; Awschalom, D. D.; Buhrman, R. A.; Daughton, J.M.; von Molnar, S.; Roukes, M. L.; Chtchelkanova, A. Y.;Treger, D. M. Science 2001, 294, 1488. doi: 10.1126/science.1065389

    130. [130]

      (130) Kwolek, P.; Oszajca, M.; Szacilowski, K. Coord. Chem. Rev.2012, 256, 1706. doi: 10.1016/j.ccr.2012.03.028

    131. [131]

      (131) Xu, K.; Huang, J.; Guan, Z.; Li, Q.; Yang, J. Chem. Phys. Lett.2012, 535, 111. doi: 10.1016/j.cplett.2012.03.066

    132. [132]

      (132) Yuan, L.; Li, Z.; Yang, J.; Hou, J. G. Phys. Chem. Chem. Phys.2012, 14, 8179.

    133. [133]

      (133) Tsuka shi, K.; Alphenaar, B.W.; A , H. Nature 1999, 401,572. doi: 10.1038/44108

    134. [134]

      (134) Harneit,W.; Boehme, C.; Schaefer, S.; Huebener, K.;Fostiropoulos, K.; Lips, K. Phys. Rev. Lett. 2007, 98, 216601.doi: 10.1103/PhysRevLett.98.216601

    135. [135]

      (135) Petta, J. R.; Slater, S. K.; Ralph, D. C. Phys. Rev. Lett. 2004,93, 136601. doi: 10.1103/PhysRevLett.93.136601

    136. [136]

      (136) Xiong, Z. H.;Wu, D.; Vardeny, Z. V.; Shi, J. Nature 2004, 427,821. doi: 10.1038/nature02325

    137. [137]

      (137) Xu, K.; Huang, J.; Lei, S.; Su, H.; Boey, F. Y. C.; Li, Q.; Yang,J. J. Chem. Phys. 2009, 131, 104704. doi: 10.1063/1.3224175


  • 加载中
    1. [1]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    2. [2]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    3. [3]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    4. [4]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

    5. [5]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    6. [6]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    7. [7]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    8. [8]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    9. [9]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    10. [10]

      Wenbing Hu Jin Zhu . Flipped Classroom Approach in Teaching Professional English Reading and Writing to Polymer Graduates. University Chemistry, 2024, 39(6): 128-131. doi: 10.3866/PKU.DXHX202310015

    11. [11]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    12. [12]

      Pingping Zhu Yongjun Xie Yuanping Yi Yu Huang Qiang Zhou Shiyan Xiao Haiyang Yang Pingsheng He . Excavation and Extraction of Ideological and Political Elements for the Virtual Simulation Experiments at Molecular Level: Taking the Project “the Simulation and Computation of Conformation, Morphology and Dimensions of Polymer Chains” as an Example. University Chemistry, 2024, 39(2): 83-88. doi: 10.3866/PKU.DXHX202309063

    13. [13]

      Kai Yang Gehua Bi Yong Zhang Delin Jin Ziwei Xu Qian Wang Lingbao Xing . Comprehensive Polymer Chemistry Experiment Design: Preparation and Characterization of Rigid Polyurethane Foam Materials. University Chemistry, 2024, 39(4): 206-212. doi: 10.3866/PKU.DXHX202308045

    14. [14]

      Zheqi Wang Yawen Lin Shunliu Deng Huijun Zhang Jinmei Zhou . Antiviral Strategies: A Brief Review of the Development History of Small Molecule Antiviral Drugs. University Chemistry, 2024, 39(9): 85-93. doi: 10.12461/PKU.DXHX202403108

    15. [15]

      Jia Yao Xiaogang Peng . Theory of Macroscopic Molecular Systems: Theoretical Framework of the Physical Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 27-37. doi: 10.12461/PKU.DXHX202408117

    16. [16]

      Hongyun Liu Jiarun Li Xinyi Li Zhe Liu Jiaxuan Li Cong Xiao . Course Ideological and Political Design of a Comprehensive Chemistry Experiment: Constructing a Visual Molecular Logic System Based on Intelligent Hydrogel Film Electrodes. University Chemistry, 2024, 39(2): 227-233. doi: 10.3866/PKU.DXHX202309070

    17. [17]

      Rui Li Jiayu Zhang Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051

    18. [18]

      Shuang Meng Haixin Long Zhou Zhou Meizhu Rong . Inorganic Chemistry Curriculum Design and Implementation of Based on “Stepped-Task Driven + Multi-Dimensional Output” Model: A Case Study on Intermolecular Forces. University Chemistry, 2024, 39(3): 122-131. doi: 10.3866/PKU.DXHX202309008

    19. [19]

      Jia Zhou . Constructing Potential Energy Surface of Water Molecule by Quantum Chemistry and Machine Learning: Introduction to a Comprehensive Computational Chemistry Experiment. University Chemistry, 2024, 39(3): 351-358. doi: 10.3866/PKU.DXHX202309060

    20. [20]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

Metrics
  • PDF Downloads(1145)
  • Abstract views(2165)
  • HTML views(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return