Citation: JIN Tao, XU Di, DIAO Peng, XIANG Min. Preparation and Photoelectrocatalytic Water Oxidation Properties of FeO(OH)-TiO2/CoPi Composite Photoanodes[J]. Acta Physico-Chimica Sinica, ;2012, 28(10): 2276-2284. doi: 10.3866/PKU.WHXB201209101 shu

Preparation and Photoelectrocatalytic Water Oxidation Properties of FeO(OH)-TiO2/CoPi Composite Photoanodes

  • Received Date: 4 July 2012
    Available Online: 10 September 2012

    Fund Project: 国家自然科学基金(20973020, 21173016) (20973020, 21173016) 高等学校博士学科点基金(20101102110002) (20101102110002) 新世纪人才支持计划(NCET-08-0034)资助项目 (NCET-08-0034)

  • TiO2 nanocrystals were synthesized using a sol-gel method, and then the impregnation technique was used to modify the surface of the TiO2 nanocrystals with FeO(OH). The optimal concentration of Fe3+ for the modification of the TiO2 nanocrystals was determined by UV-Vis spectroscopy. A cobalt-phosphate (CoPi) water oxidation catalyst was electrochemically deposited onto the FeO(OH)- TiO2 photoanodes. The resulting FeO(OH)-TiO2/CoPi composite photoanodes were systematically characterized by transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), and scanning electron microscopy (SEM), and the photoelectrochemical water oxidation properties of the FeO(OH)-TiO2/CoPi composite photoanodes were investigated in neutral conditions by electrochemical and photoelectrochemical methods. The results indicated that the TiO2 particles were pure anatase nanocrystals, and the FeO(OH) phase on the TiO2 surfaces was ethite. The optimal light absorption properties of the FeO(OH)-TiO2 photoanodes were achieved when the photoanodes were prepared in the precursor solution with a Fe3+:TiO2 mass ratio of 0.05%. The overpotential for oxygen evolution on the FeO(OH)-TiO2/CoPi composite photoanodes under illumination decreased significantly compared with that obtained on the CoPi catalyst. The high oxygen evolution activity of the composite photoanodes can be attributed to modification of FeO(OH) on TiO2 nanocrystal surfaces changing the light absorption band from the ultraviolet to the visible region and CoPi inhibited hole-electron recombination through facilitating the photon-induced hole transfer for water oxidation.

  • 加载中
    1. [1]

      (1) Fujishima, A.; Honda, K. Nature 1972, 238, 37. doi: 10.1038/238037a0

    2. [2]

      (2) Jang, J. S.; Kim, H. G.; Joshi, U. A.; Jang, J.W.; Lee, J. S. Int. J. Hydrog. Energy 2008, 33, 5975. doi: 10.1016/j.ijhydene.2008.07.105

    3. [3]

      (3) Dholam, R.; Patel, N.; Adami, M.; Miotello, A. Int. J. Hydrog. Energy 2009, 34, 5337. doi: 10.1016/j.ijhydene.2009.05.011

    4. [4]

      (4) Shankar, K.; Basham, J. I.; Allam, N. K.; Varghese, O. K.; Mor,G. K.; Feng, X.; Paulose, M.; Seabold, J. A.; Choi, K. S.;Grimes, C. A. J. Phys. Chem. C 2009, 113, 6327. doi: 10.1021/jp809385x

    5. [5]

      (5) Liu, F. S.; Ji, R.;Wu, M.; Sun, Y. M. Acta Phys. -Chim. Sin.2007, 23, 1899. [刘福生, 吉仁, 吴敏, 孙岳明. 物理化学学报, 2007, 23, 1899.] doi: 10.3866/PKU.WHXB20071213

    6. [6]

      (6) Li, H. L. Luo,W. L.; Chen, T.; Tian,W. Y.; Sun, M.; Li, C.; Zhu,D.; Liu, R. R.; Zhao, Y. L.; Liu, C. L. Acta Phys. -Chim. Sin.2008, 24, 1383. [李海龙, 罗武林, 陈涛, 田文宇, 孙茂,黎春, 朱地, 刘冉冉, 赵宇亮, 刘春立. 物理化学学报,2008, 24, 1383.] doi: 10.3866/PKU.WHXB20080810

    7. [7]

      (7) Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Science2001, 293, 269. doi: 10.1126/science.1061051

    8. [8]

      (8) ng, J.; Lai, Y.; Lin, C. Electrochimica Acta 2010, 55, 4776.doi: 10.1016/j.electacta.2010.03.055

    9. [9]

      (9) Fei, H.; Yang, Y.; Ro w, D. L.; Fan, X.; Oliver, S. R. J. ACS Appl. Mater. Interfaces 2010, 2, 974. doi: 10.1021/am100087b

    10. [10]

      (10) Zhang, Z.; Hossain, M. F.; Takahashi, T. Int. J. Hydrog. Energy2010, 35, 8528. doi: 10.1016/j.ijhydene.2010.03.032

    11. [11]

      (11) Ni, M.; Leung, M. K. H.; Leung, D. Y. C.; Sumathy, K. Renew. Sust. Energ. Rev. 2007, 11, 401. doi: 10.1016/j.rser.2005.01.009

    12. [12]

      (12) Liu, M.; Qiu, X.; Miyauchi, M.; Hashimoto, K. Chem. Mater.2011, 23, 5282. doi: 10.1021/cm203025b

    13. [13]

      (13) Yu, H.; Irie, H.; Shimodaira, Y.; Hosogi, Y.; Kuroda, Y.;Miyauchi, M.; Hashimoto, K. J. Phys. Chem. C 2010, 114,16481. doi: 10.1021/jp1071956

    14. [14]

      (14) Irie, H.; Shibanuma, T.; Kamiya, K.; Miura, S.; Yokoyama, T.;Hashimoto, K. App. Catal. B: Environ. 2010, 96, 142.

    15. [15]

      (15) Irie, H.; Kamiya, K.; Shibanuma, T.; Miura, S.; Tryk, D. A.;Yokoyama, T.; Hashimoto, K. J. Phys. Chem. C 2009, 113,10761. doi: 10.1021/jp903063z

    16. [16]

      (16) Nakamura, R.; Okamoto, A.; Osawa, H.; Irie, H.; Hashimoto, K.J. Am. Chem. Soc. 2007, 129, 9596. doi: 10.1021/ja073668n

    17. [17]

      (17) Luo, D. C;. Zhang, L. L.; Long, H. J.; Chen, Y. M.; Cao, Y. A.Acta Phys. -Chim. Sin. 2008, 24, 1095. [罗大超, 张兰兰, 龙绘锦, 陈咏梅, 曹亚安. 物理化学学报, 2008, 24, 1095.] doi: 10.3866/PKU.WHXB20080632

    18. [18]

      (18) Kanan, M.W.; Nocera, D. G. Science 2008, 321, 1072. doi: 10.1126/science.1162018

    19. [19]

      (19) Surendranath, Y.; Kanan, M.W.; Nocera, D. G. J. Am. Chem. Soc. 2010, 132, 16501. doi: 10.1021/ja106102b

    20. [20]

      (20) Gerken, J. B.; McAlpin, J. G.; Chen, J. Y. C.; Rigsby, M. L.;Casey,W. H.; Britt, R. D.; Stahl, S. S. J. Am. Chem. Soc. 2011,133, 14431. doi: 10.1021/ja205647m

    21. [21]

      (21) Steinmiller, E. M. P.; Choi, K. S. Proc. Natl. Acad. Sci. U. S. A.2009, 106, 20633. doi: 10.1073/pnas.0910203106

    22. [22]

      (22) Barroso, M.; Cowan, A. J.; Pendlebury, S. R.; Grätzel, M.; Klug,D. R.; Durrant, J. R. J. Am. Chem. Soc. 2011, 133, 14868. doi: 10.1021/ja205325v

    23. [23]

      (23) Zhong, D. K.; Gamelin, D. R. J. Am. Chem. Soc. 2010, 132,4202. doi: 10.1021/ja908730h

    24. [24]

      (24) Zhong, D. K.; Sun, J.; Inumaru, H.; Gamelin, D. R. J. Am. Chem. Soc. 2009, 131, 6086. doi: 10.1021/ja9016478

    25. [25]

      (25) Abdi, F. F.; van de Krol, R. J. Phys. Chem. C 2012, 116, 9398.

    26. [26]

      (26) Zhong, D. K.; Choi, S.; Gamelin, D. R. J. Am. Chem. Soc. 2011,133, 18370. doi: 10.1021/ja207348x

    27. [27]

      (27) Jeon, T. H.; Choi,W.; Park, H. Phys. Chem. Chem. Phys. 2011,13, 21392.

    28. [28]

      (28) Seabold, J. A.; Choi, K. S. Chem. Mater. 2011, 23, 1105. doi: 10.1021/cm1019469

    29. [29]

      (29) Sugimoto, T.; Zhou, X.; Muramatsu, A. J. Colloid Interface Sci.2003, 259, 43. doi: 10.1016/S0021-9797(03)00036-5

    30. [30]

      (30) Sugimoto, T.; Zhou, X.; Muramatsu, A. J. Colloid Interface Sci.2003, 259, 53. doi: 10.1016/S0021-9797(03)00035-3

    31. [31]

      (31) Zhong, D. K.; Cornuz, M.; Sivula, K.; Grätzel, M.; Gamelin, D.R. Energy & Environmental Science 2011, 4, 1759. doi: 10.1039/c1ee01034d

    32. [32]

      (32) Chen, Y.; He, X.; Zhao, X.; Yuan, Q.; Gu, X. J. Colloid Interface Sci. 2007, 310, 171. doi: 10.1016/j.jcis.2007.01.046

    33. [33]

      (33) Klahr, B.; Gimenez, S.; Fabregat-Santia , F.; Hamann, T.;Bisquert, J. J. Am. Chem. Soc. 2012, 134, 4294. doi: 10.1021/ja210755h


  • 加载中
    1. [1]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    2. [2]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    3. [3]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    4. [4]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    5. [5]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    6. [6]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    7. [7]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    8. [8]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    9. [9]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    10. [10]

      CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级

      . CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -.

    11. [11]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    12. [12]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    13. [13]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    14. [14]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    15. [15]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    16. [16]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    17. [17]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    18. [18]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    19. [19]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    20. [20]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

Metrics
  • PDF Downloads(1095)
  • Abstract views(2068)
  • HTML views(15)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return