Citation:
JIN Tao, XU Di, DIAO Peng, XIANG Min. Preparation and Photoelectrocatalytic Water Oxidation Properties of FeO(OH)-TiO2/CoPi Composite Photoanodes[J]. Acta Physico-Chimica Sinica,
;2012, 28(10): 2276-2284.
doi:
10.3866/PKU.WHXB201209101
-
TiO2 nanocrystals were synthesized using a sol-gel method, and then the impregnation technique was used to modify the surface of the TiO2 nanocrystals with FeO(OH). The optimal concentration of Fe3+ for the modification of the TiO2 nanocrystals was determined by UV-Vis spectroscopy. A cobalt-phosphate (CoPi) water oxidation catalyst was electrochemically deposited onto the FeO(OH)- TiO2 photoanodes. The resulting FeO(OH)-TiO2/CoPi composite photoanodes were systematically characterized by transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), and scanning electron microscopy (SEM), and the photoelectrochemical water oxidation properties of the FeO(OH)-TiO2/CoPi composite photoanodes were investigated in neutral conditions by electrochemical and photoelectrochemical methods. The results indicated that the TiO2 particles were pure anatase nanocrystals, and the FeO(OH) phase on the TiO2 surfaces was ethite. The optimal light absorption properties of the FeO(OH)-TiO2 photoanodes were achieved when the photoanodes were prepared in the precursor solution with a Fe3+:TiO2 mass ratio of 0.05%. The overpotential for oxygen evolution on the FeO(OH)-TiO2/CoPi composite photoanodes under illumination decreased significantly compared with that obtained on the CoPi catalyst. The high oxygen evolution activity of the composite photoanodes can be attributed to modification of FeO(OH) on TiO2 nanocrystal surfaces changing the light absorption band from the ultraviolet to the visible region and CoPi inhibited hole-electron recombination through facilitating the photon-induced hole transfer for water oxidation.
-
-
-
[1]
(1) Fujishima, A.; Honda, K. Nature 1972, 238, 37. doi: 10.1038/238037a0
-
[2]
(2) Jang, J. S.; Kim, H. G.; Joshi, U. A.; Jang, J.W.; Lee, J. S. Int. J. Hydrog. Energy 2008, 33, 5975. doi: 10.1016/j.ijhydene.2008.07.105
-
[3]
(3) Dholam, R.; Patel, N.; Adami, M.; Miotello, A. Int. J. Hydrog. Energy 2009, 34, 5337. doi: 10.1016/j.ijhydene.2009.05.011
-
[4]
(4) Shankar, K.; Basham, J. I.; Allam, N. K.; Varghese, O. K.; Mor,G. K.; Feng, X.; Paulose, M.; Seabold, J. A.; Choi, K. S.;Grimes, C. A. J. Phys. Chem. C 2009, 113, 6327. doi: 10.1021/jp809385x
-
[5]
(5) Liu, F. S.; Ji, R.;Wu, M.; Sun, Y. M. Acta Phys. -Chim. Sin.2007, 23, 1899. [刘福生, 吉仁, 吴敏, 孙岳明. 物理化学学报, 2007, 23, 1899.] doi: 10.3866/PKU.WHXB20071213
-
[6]
(6) Li, H. L. Luo,W. L.; Chen, T.; Tian,W. Y.; Sun, M.; Li, C.; Zhu,D.; Liu, R. R.; Zhao, Y. L.; Liu, C. L. Acta Phys. -Chim. Sin.2008, 24, 1383. [李海龙, 罗武林, 陈涛, 田文宇, 孙茂,黎春, 朱地, 刘冉冉, 赵宇亮, 刘春立. 物理化学学报,2008, 24, 1383.] doi: 10.3866/PKU.WHXB20080810
-
[7]
(7) Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Science2001, 293, 269. doi: 10.1126/science.1061051
-
[8]
(8) ng, J.; Lai, Y.; Lin, C. Electrochimica Acta 2010, 55, 4776.doi: 10.1016/j.electacta.2010.03.055
-
[9]
(9) Fei, H.; Yang, Y.; Ro w, D. L.; Fan, X.; Oliver, S. R. J. ACS Appl. Mater. Interfaces 2010, 2, 974. doi: 10.1021/am100087b
-
[10]
(10) Zhang, Z.; Hossain, M. F.; Takahashi, T. Int. J. Hydrog. Energy2010, 35, 8528. doi: 10.1016/j.ijhydene.2010.03.032
-
[11]
(11) Ni, M.; Leung, M. K. H.; Leung, D. Y. C.; Sumathy, K. Renew. Sust. Energ. Rev. 2007, 11, 401. doi: 10.1016/j.rser.2005.01.009
-
[12]
(12) Liu, M.; Qiu, X.; Miyauchi, M.; Hashimoto, K. Chem. Mater.2011, 23, 5282. doi: 10.1021/cm203025b
-
[13]
(13) Yu, H.; Irie, H.; Shimodaira, Y.; Hosogi, Y.; Kuroda, Y.;Miyauchi, M.; Hashimoto, K. J. Phys. Chem. C 2010, 114,16481. doi: 10.1021/jp1071956
-
[14]
(14) Irie, H.; Shibanuma, T.; Kamiya, K.; Miura, S.; Yokoyama, T.;Hashimoto, K. App. Catal. B: Environ. 2010, 96, 142.
-
[15]
(15) Irie, H.; Kamiya, K.; Shibanuma, T.; Miura, S.; Tryk, D. A.;Yokoyama, T.; Hashimoto, K. J. Phys. Chem. C 2009, 113,10761. doi: 10.1021/jp903063z
-
[16]
(16) Nakamura, R.; Okamoto, A.; Osawa, H.; Irie, H.; Hashimoto, K.J. Am. Chem. Soc. 2007, 129, 9596. doi: 10.1021/ja073668n
-
[17]
(17) Luo, D. C;. Zhang, L. L.; Long, H. J.; Chen, Y. M.; Cao, Y. A.Acta Phys. -Chim. Sin. 2008, 24, 1095. [罗大超, 张兰兰, 龙绘锦, 陈咏梅, 曹亚安. 物理化学学报, 2008, 24, 1095.] doi: 10.3866/PKU.WHXB20080632
-
[18]
(18) Kanan, M.W.; Nocera, D. G. Science 2008, 321, 1072. doi: 10.1126/science.1162018
-
[19]
(19) Surendranath, Y.; Kanan, M.W.; Nocera, D. G. J. Am. Chem. Soc. 2010, 132, 16501. doi: 10.1021/ja106102b
-
[20]
(20) Gerken, J. B.; McAlpin, J. G.; Chen, J. Y. C.; Rigsby, M. L.;Casey,W. H.; Britt, R. D.; Stahl, S. S. J. Am. Chem. Soc. 2011,133, 14431. doi: 10.1021/ja205647m
-
[21]
(21) Steinmiller, E. M. P.; Choi, K. S. Proc. Natl. Acad. Sci. U. S. A.2009, 106, 20633. doi: 10.1073/pnas.0910203106
-
[22]
(22) Barroso, M.; Cowan, A. J.; Pendlebury, S. R.; Grätzel, M.; Klug,D. R.; Durrant, J. R. J. Am. Chem. Soc. 2011, 133, 14868. doi: 10.1021/ja205325v
-
[23]
(23) Zhong, D. K.; Gamelin, D. R. J. Am. Chem. Soc. 2010, 132,4202. doi: 10.1021/ja908730h
-
[24]
(24) Zhong, D. K.; Sun, J.; Inumaru, H.; Gamelin, D. R. J. Am. Chem. Soc. 2009, 131, 6086. doi: 10.1021/ja9016478
-
[25]
(25) Abdi, F. F.; van de Krol, R. J. Phys. Chem. C 2012, 116, 9398.
-
[26]
(26) Zhong, D. K.; Choi, S.; Gamelin, D. R. J. Am. Chem. Soc. 2011,133, 18370. doi: 10.1021/ja207348x
-
[27]
(27) Jeon, T. H.; Choi,W.; Park, H. Phys. Chem. Chem. Phys. 2011,13, 21392.
-
[28]
(28) Seabold, J. A.; Choi, K. S. Chem. Mater. 2011, 23, 1105. doi: 10.1021/cm1019469
-
[29]
(29) Sugimoto, T.; Zhou, X.; Muramatsu, A. J. Colloid Interface Sci.2003, 259, 43. doi: 10.1016/S0021-9797(03)00036-5
-
[30]
(30) Sugimoto, T.; Zhou, X.; Muramatsu, A. J. Colloid Interface Sci.2003, 259, 53. doi: 10.1016/S0021-9797(03)00035-3
-
[31]
(31) Zhong, D. K.; Cornuz, M.; Sivula, K.; Grätzel, M.; Gamelin, D.R. Energy & Environmental Science 2011, 4, 1759. doi: 10.1039/c1ee01034d
-
[32]
(32) Chen, Y.; He, X.; Zhao, X.; Yuan, Q.; Gu, X. J. Colloid Interface Sci. 2007, 310, 171. doi: 10.1016/j.jcis.2007.01.046
-
[33]
(33) Klahr, B.; Gimenez, S.; Fabregat-Santia , F.; Hamann, T.;Bisquert, J. J. Am. Chem. Soc. 2012, 134, 4294. doi: 10.1021/ja210755h
-
[1]
-
-
-
[1]
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
-
[2]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
-
[3]
Yan LIU , Jiaxin GUO , Song YANG , Shixian XU , Yanyan YANG , Zhongliang YU , Xiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043
-
[4]
Xin Han , Zhihao Cheng , Jinfeng Zhang , Jie Liu , Cheng Zhong , Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023
-
[5]
Lina Guo , Ruizhe Li , Chuang Sun , Xiaoli Luo , Yiqiu Shi , Hong Yuan , Shuxin Ouyang , Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002
-
[6]
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
-
[7]
Yaping ZHANG , Tongchen WU , Yun ZHENG , Bizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256
-
[8]
Zhuoyan Lv , Yangming Ding , Leilei Kang , Lin Li , Xiao Yan Liu , Aiqin Wang , Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015
-
[9]
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
-
[10]
.
CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级
. CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -. -
[11]
Zhanggui DUAN , Yi PEI , Shanshan ZHENG , Zhaoyang WANG , Yongguang WANG , Junjie WANG , Yang HU , Chunxin LÜ , Wei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317
-
[12]
Endong YANG , Haoze TIAN , Ke ZHANG , Yongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369
-
[13]
Jiapei Zou , Junyang Zhang , Xuming Wu , Cong Wei , Simin Fang , Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081
-
[14]
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
-
[15]
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210
-
[16]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[17]
Meng Lin , Hanrui Chen , Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117
-
[18]
Caixia Lin , Zhaojiang Shi , Yi Yu , Jianfeng Yan , Keyin Ye , Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005
-
[19]
Yongmei Liu , Lisen Sun , Zhen Huang , Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020
-
[20]
Jiaxin Su , Jiaqi Zhang , Shuming Chai , Yankun Wang , Sibo Wang , Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012
-
[1]
Metrics
- PDF Downloads(1095)
- Abstract views(2068)
- HTML views(15)